You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
For a sophomore-level course in Linear Algebra This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Based on the recommendations of the Linear Algebra Curriculum Study Group, this introduction to linear algebra offers a matrix-oriented approach with more emphasis on problem solving and applications. Throughout the text, use of technology is encouraged. The focus is on matrix arithmetic, systems of linear equations, properties of Euclidean n-space, eigenvalues and eigenvectors, and orthogonality. Although matrix-oriented, the text provides a solid coverage of vector spaces
For courses in Advanced Linear Algebra. This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved). Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.
None
Linear algebra is growing in importance. 3D entertainment, animations in movies and video games are developed using linear algebra. Animated characters are generated using equations straight out of this book. Linear algebra is used to extract knowledge from the massive amounts of data generated from modern technology. The Fourth Edition of this popular text introduces linear algebra in a comprehensive, geometric, and algorithmic way. The authors start with the fundamentals in 2D and 3D, then move on to higher dimensions, expanding on the fundamentals and introducing new topics, which are necessary for many real-life applications and the development of abstract thought. Applications are intro...
Linear Algebra 4th ed., by Friedberg, Insel, and Spence is one of the world's best textbooks on the subject of finite-dimensional linear analysis. This book offers 266 solutions to problems from chapters 1-7. Specifically, there are 27 solutions to problems in chapter 1; 64 solutions to problems in chapter 2; 17 solutions to problems in chapter 3; 16 solutions to problems in chapter 4; 44 solutions to problems in chapter 5; 50 solutions to problems in chapter 6; and 8 solutions to problems in chapter 7.
This classic volume applies linear algebra to a variety of disciplines-engineering, the physical sciences, social sciences, and business. It motivates the reader with illustrative examples. This is a competitor to Strang.
The fourth edition of this highly-successful textbook has been fully revised and updated. It covers groups, rings, modules and fields, and exhibits the interplay of both group and field theory by means of Galois theory and shows insolvability of a quantic, in general, by radicals.