You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This second edition contains ten chapters dealing with oak (Quercus)-related literature published since the first edition. Included are the relatively new subject areas of forest biomass use for fuel, the importance of carbon sequestration by forests, and how climate change is expected to affect the distribution of oaks and associated tree species. The chapters are grouped into three parts. The first part contains three chapters covering the ecological characteristics and distribution of oak species, the various kinds of oak forests in the USA and how they have been classified, and their history of human use. The second part comprises three chapters covering site productivity and stand development. An understanding of the productive capacity of oak forests is central to a broad spectrum of issues related to their management and potentialities, not only for timber but also for wildlife and other values, including carbon sequestration. The third part comprises four chapters on silvicultural methods and the growth and yield of oak forests.
None
SILVAH, FIBER, NE-TWIGS, and OAKSIM simulators, commonly used in the northeastern United States, were evaluated by comparing predicted stand development with actual stand development records for periods ranging from 15 to 50 years. Results varied with stand parameter, forest type, projection length, and geographic area. Except in the spruce-fir forest type where FIBER stands out as the best simulator, no single simulator is clearly superior to the others for all locations within a forest type. In general, FIBER, NE-TWIGS, and SILVAH performed best in the northern hardwood (beech- birch-maple) forest type; NE-TWIGS and SILVAH performed best in the Allegheny hardwood (cherry-maple) forest type; SILVAH and OAKSIM performed best in the oak- hickory forest type; and SILVAH was most suitable in the transition hardwood (mixture of northern hardwoods and oaks) forest type. The results give growth and yield model users more information for selecting the simulator most suitable for their particular needs. The results also can be used as a diagnostic tool for growth and yield model development.
S2In West Virginia, yellow-poplar (Liriodendron tulipifera) is abundant and is a prime candidate for increased utilization in a variety of manufacturing industries. Computer simulations are a cost-effective tool for estimating potential cutting yields from lumber. They can be used to promote increased use of yellow-poplar in the furniture, cabinet, and architectural woodworking industries and may also lead to increased utilization of the lower grades of lumber. This paper describes the data collection methods and the format of the new West Virginia yellow-poplar lumber defect database that was developed for use with computer simulation programs. The database contains descriptions of 627 boards, totaling approximately 3,800 board feet, collected in West Virginia for grades FAS, FASIF, No. 1 Common, No. 2A Common, and No. 28 Common.S3.