You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presents papers by theoretical physicist J. Robert Schrieffer on topics in superconductivity and condensed matter physics.
Underpinning all the other branches of science, physics affects the way we live our lives, and ultimately how life itself functions. Recent scientific advances have led to dramatic reassessment of our understanding of the world around us, and made a significant impact on our lifestyle. In this book, leading international experts, including Nobel prize winners, explore the frontiers of modern physics, from the particles inside an atom to the stars that make up a galaxy, from nano-engineering and brain research to high-speed data networks. Revealing how physics plays a vital role in what we see around us, this book will fascinate scientists of all disciplines, and anyone wanting to know more about the world of physics today.
Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.
The development of transistors, the integrated circuit, liquid-crystal displays, and even DVD players can be traced back to fundamental research pioneered in the field of condensed-matter and materials physics (CMPP). The United States has been a leader in the field, but that status is now in jeopardy. Condensed-Matter and Materials Physics, part of the Physics 2010 decadal survey project, assesses the present state of the field in the United States, examines possible directions for the 21st century, offers a set of scientific challenges for American researchers to tackle, and makes recommendations for effective spending of federal funds. This book maintains that the field of CMPP is certain...
A physicist's guide to the phenomena of life Interactions between the fields of physics and biology reach back over a century, and some of the most significant developments in biology—from the discovery of DNA's structure to imaging of the human brain—have involved collaboration across this disciplinary boundary. For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Here, William Bialek provides the first graduate-level introduction to biophysics aimed at physics students. Bialek begins by exploring how photon counting in vision offers important lessons about the opport...
Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.
A Mind Over Matter is a biography of the Nobel Prize-winning theoretical physicist, Philip W. Anderson. Anderson is widely regarded as one of the most accomplished and influential physicists of the second half of the twentieth century. Unlike the physicists who appear on television or write popular books, Anderson studied the physics of the very many, i.e., the science of how vast numbers of atoms conspire together to create everything from liquid water to sparkling diamonds, and from semiconductors (essential for cell phones and computers) to superconductors (essential for MRI machines). More than any other single person, Anderson transformed the patchwork field of solid-state physics into the intellectually coherent discipline now called condensed matter physics. He developed important concepts that transcended physics, and influenced the scientifically literate public through his essays and articles. Book jacket.
Polyacetylence, (CH)x is the simplest conjugated polymer. Prestine polyacetylence is a good insulator, whereas its highly doped version exhibits metal-like electrical conductivity. This book gives a detailed introduction to this rapidly-developing field is given along with a collection of original papers. The main purpose is to help chemists and physicists grasp the main ideas and most important facts; an expert may also find it useful as a reference volume.
This extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in superconductivity. Covering the entire field, this unparalleled resource carefully blends theoretical studies with experimental results to provide an indispensable foundation for further research. Leading researchers, including Nobel laureates, describe the state of the art in conventional and unconventional superconductors. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued, intense research into electron-phone based superconductivity.
"Quantum field theory is the mathematical and conceptual framework that describes the physics of the very small, including subatomic particles and quasiparticles. It is used to address a range of problems across subfields, from high-energy physics and gravitation to statistical physics and condensed matter physics. Despite the breadth of its applications, however, the teaching of quantum field theory has historically been strongly oriented toward high-energy physics students, while others-particularly in condensed matter and statistical physics-are typically taught in a separate course, or take an alternate sequence in many-body and statistical physics. Author Eduardo Fradkin strongly believ...