You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computational Complexity Theory is the study of how much of a given resource is required to perform the computations that interest us the most. Four decades of fruitful research have produced a rich and subtle theory of the relationship between different resource measures and problems. At the core of the theory are some of the most alluring open problems in mathematics. This book presents three weeks of lectures from the IAS/Park City Mathematics Institute Summer School on computational complexity. The first week gives a general introduction to the field, including descriptions of the basic mo.
This volume presents three weeks of lectures given at the Summer School on Quantum Field Theory, Supersymmetry, and Enumerative Geometry. With this volume, the Park City Mathematics Institute returns to the general topic of the first institute: the interplay between quantum field theory and mathematics.
The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.
Nothing provided
Random matrix theory has many roots and many branches in mathematics, statistics, physics, computer science, data science, numerical analysis, biology, ecology, engineering, and operations research. This book provides a snippet of this vast domain of study, with a particular focus on the notations of universality and integrability. Universality shows that many systems behave the same way in their large scale limit, while integrability provides a route to describe the nature of those universal limits. Many of the ten contributed chapters address these themes, while others touch on applications of tools and results from random matrix theory. This book is appropriate for graduate students and researchers interested in learning techniques and results in random matrix theory from different perspectives and viewpoints. It also captures a moment in the evolution of the theory, when the previous decade brought major break-throughs, prompting exciting new directions of research.
A co-publication of the AMS, IAS/Park City Mathematics Institute, and Society for Industrial and Applied Mathematics Articles in this volume are based on lectures presented at the Park City summer school on “Mathematics and Materials” in July 2014. The central theme is a description of material behavior that is rooted in statistical mechanics. While many presentations of mathematical problems in materials science begin with continuum mechanics, this volume takes an alternate approach. All the lectures present unique pedagogical introductions to the rich variety of material behavior that emerges from the interplay of geometry and statistical mechanics. The topics include the order-disorde...
This volume contains lectures from the Graduate Summer School “Quantum Field Theory and Manifold Invariants” held at Park City Mathematics Institute 2019. The lectures span topics in topology, global analysis, and physics, and they range from introductory to cutting edge. Topics treated include mathematical gauge theory (anti-self-dual equations, Seiberg-Witten equations, Higgs bundles), classical and categorified knot invariants (Khovanov homology, Heegaard Floer homology), instanton Floer homology, invertible topological field theory, BPS states and spectral networks. This collection presents a rich blend of geometry and topology, with some theoretical physics thrown in as well, and so provides a snapshot of a vibrant and fast-moving field. Graduate students with basic preparation in topology and geometry can use this volume to learn advanced background material before being brought to the frontiers of current developments. Seasoned researchers will also benefit from the systematic presentation of exciting new advances by leaders in their fields.