You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A First course in Ordinary Differential Equations provides a detailed introduction to the subject focusing on analytical methods to solve ODEs and theoretical aspects of analyzing them when it is difficult/not possible to find their solutions explicitly. This two-fold treatment of the subject is quite handy not only for undergraduate students in mathematics but also for physicists, engineers who are interested in understanding how various methods to solve ODEs work. More than 300 end-of-chapter problems with varying difficulty are provided so that the reader can self examine their understanding of the topics covered in the text. Most of the definitions and results used from subjects like rea...
A First course in Ordinary Differential Equations provides a detailed introduction to the subject focusing on analytical methods to solve ODEs and theoretical aspects of analyzing them when it is difficult/not possible to find their solutions explicitly. This two-fold treatment of the subject is quite handy not only for undergraduate students in mathematics but also for physicists, engineers who are interested in understanding how various methods to solve ODEs work. More than 300 end-of-chapter problems with varying difficulty are provided so that the reader can self examine their understanding of the topics covered in the text. Most of the definitions and results used from subjects like rea...
This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.
As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, f...
This book provides an introduction to age-structured population modeling which emphasizes the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modeling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behavior of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students and researchers in mathematical biology, epidemiology and demography who are interested in the systematic presentation of relevant models and mathematical methods.
The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB, Mathematica, and Maple A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field o
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.
Substantially revised and updated, Computer Methods for Engineering with MATLAB® Applications, Second Edition presents equations to describe engineering processes and systems. It includes computer methods for solving these equations and discusses the nature and validity of the numerical results for a variety of engineering problems. This edition now uses MATLAB in its discussions of computer solution. New to the Second Edition Recent advances in computational software and hardware A large number of MATLAB commands and programs for solving exercises and to encourage students to develop their own computer programs for specific problems Additional exercises and examples in all chapters New and...