You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Featuring reliable, up-to-the-minute reviews of major developments in chromatography, Volume 43 studies the latest advances in the field with contributions and current research from world-renowned leaders in industry. It provides detailed discussions of current topics, issues, and developments in separation science and examining topics such as grad
Leading chemists and engineers concisely explain the principles behind microchip capillary electrophoresis and demonstrate its use in a variety of biochemical applications, ranging from the analysis of DNA, proteins, and peptides to single cell analysis and measuring the impact of surface modification on flow in microfluidic channels. Since surface chemistry must be carefully considered for optimal operation at this scale, the authors also discuss methods of both adsorbed and covalent surface modification for its control. Fabrication methods for producing microchips with glass, poly(dimethylsiloxane), and other polymers are also provided so that even novices can produce simple devices for standard separations. Microchip Capillary Electrophoresis: Methods and Protocols provides a practical starting point for either initiating research in the field of microchip capillary electrophoresis or understanding the full range of what can be done with existing systems.
Linking “standard” but often mutually incompatible analytical techniques – so called hyphenation – generally leads to enhanced analytical performance, so hyphenated techniques are widely used in areas where samples are presented in complex matrices, eg environmental, pharmaceutical and biochemical analysis. With these hyphenated techniques, sample preparation is often the most time-consuming step in analysis, particularly where compounds are present in low concentration, and it has a huge influence on the quality of the analytical results. Sample preparation is still not given the importance it deserves, however. The purpose of this book is to demonstrate the sample preparation chemi...
Volume 1 of this series focused mainly on small molecules which are intrinsically electroactive. Volume 2 continues to provide current approaches to real time measurements of essential species in the central nervous system. It describes microdialysis, a sampling technique, which facilitates the removal of small volumes of solution containing the analyte(s) of interest which can be subsequently separated by chromatography and analyzed by a range of techniques. These include electrochemistry, UV-Vis spectroscopy, fluorescence and mass spectroscopy. This approach affords the opportunity to measure a range of targets in real-time thus providing access to pharmacokinetic/pharmacodynamics measurem...
This book considers both the unique characteristics of biological samples and the challenges of microscale engineering. Divided into three main sections, it first examines fabrication technologies using non-silicon processes, which are suitable for the materials more commonly used in medical/biological analyses. These include UV lithography, LIGA, nanoimprinting, and hot embossing. Attention then shifts to microfluidic components and sensing technologies for sample preparation, delivery, and analysis in microchannels and microchambers. The final section outlines various applications and systems at the leading edge of Bio-MEMS technology in a variety of areas such as drug delivery and proteomics.
Stories behind essential microfluidic devices, from the inkjet printer to DNA sequencing chip. Hidden from view, microfluidics underlies a variety of devices that are essential to our lives, from inkjet printers to glucometers for the monitoring of diabetes. Microfluidics—which refers to the technology of miniature fluidic devices and the study of fluids at submillimeter levels—is invisible to most of us because it is hidden beneath ingenious user interfaces. In this book, Albert Folch, a leading researcher in microfluidics, describes the development and use of key microfluidic devices. He explains not only the technology but also the efforts, teams, places, and circumstances that enable...
Peroxynitrite detection and quantification provides critical information in understanding its biological implications. It will be welcomed by the community particularly medicinal and analytical chemists, developers of sensors and probes and analytical equipment manufacturers.
This text details contemporary electroanalytical strategies of biomolecules and electrical phenomena in biological systems. It presents developments in sequence-specific DNA detection for more efficient medical diagnosis of genetic and infectious diseases and microbial and viral pathogens.