You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains most of the nonstandard material necessary to get acquainted with this new rapidly developing area. It can be used as a good entry point into the study of representations of quantum groups. Among several tools used in studying representations of quantum groups (or quantum algebras) are the notions of Kashiwara's crystal bases and Lusztig's canonical bases. Mixing both approaches allows us to use a combinatorial approach to representations of quantum groups and toapply the theory to representations of Hecke algebras. The primary goal of this book is to introduce the representation theory of quantum groups using quantum groups of type $A {r-1 {(1) $ as a main example. The co...
This book comprises an overview of the material presented at the 1999 Durham Symposium on Quantum Groups and includes contributions from many of the world's leading figures in this area. It will be of interest to researchers and will also be useful as a reference text for graduate courses.
Algebraic combinatorics has evolved into one of the most active areas of mathematics during the last several decades. Its recent developments have become more interactive with not only its traditional field representation theory but also algebraic geometry, harmonic analysis and mathematical physics.This book presents articles from some of the key contributors in the area. It covers Hecke algebras, Hall algebras, the Macdonald polynomial and its deviations, and their relations with other fields.
This volume contains the proceedings of the tenth international conference on Representation Theory of Algebraic Groups and Quantum Groups, held August 2-6, 2010, at Nagoya University, Nagoya, Japan. The survey articles and original papers contained in this volume offer a comprehensive view of current developments in the field. Among others reflecting recent trends, one central theme is research on representations in the affine case. In three articles, the authors study representations of W-algebras and affine Lie algebras at the critical level, and three other articles are related to crystals in the affine case, that is, Mirkovic-Vilonen polytopes for affine type $A$ and Kerov-Kirillov-Resh...
The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher r...
This volume contains the proceedings of the conference ``Analysis, Geometry and Quantum Field Theory'' held at Potsdam University in September 2011, which honored Steve Rosenberg's 60th birthday. The papers in this volume cover a wide range of areas, including Quantum Field Theory, Deformation Quantization, Gerbes, Loop Spaces, Index Theory, Determinants of Elliptic Operators, K-theory, Infinite Rank Bundles and Mathematical Biology.
This volume contains research and expository articles from the courses and talks given at the RSME Lluis A. Santalo Summer School, ``Geometric Analysis'', held June 28-July 2, 2010, in Granada, Spain. The goal of the Summer School was to present some of the many advances currently taking place in the interaction between partial differential equations and differential geometry, with special emphasis on the theory of minimal surfaces. This volume includes expository articles about the current state of specific problems involving curvature and partial differential equations, with interactions to neighboring fields such as probability. An introductory, mostly self-contained course on constant mean curvature surfaces in Lie groups equipped with a left invariant metric is provided. The volume will be of interest to researchers, post-docs, and advanced PhD students in the interface between partial differential equations and differential geometry.
This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the $q$-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and $q$-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and s...
This volume presents the proceedings of the international conference on Combinatorial and Geometric Representation Theory. In the field of representation theory, a wide variety of mathematical ideas are providing new insights, giving powerful methods for understanding the theory, and presenting various applications to other branches of mathematics. Over the past two decades, there have been remarkable developments. This book explains the strong connections between combinatorics, geometry, and representation theory. It is suitable for graduate students and researchers interested in representation theory.
Mathematics has been called the science of order. The subject is remarkably good for generalizing specific cases to create abstract theories. However, mathematics has little to say when faced with highly complex systems, where disorder reigns. This disorder can be found in pure mathematical arenas, such as the distribution of primes, the $3n+1$ conjecture, and class field theory. The purpose of this book is to provide examples--and rigorous proofs--of the complexity law: (1) discrete systems are either simple or they exhibit advanced pseudorandomness; (2) a priori probabilities often exist even when there is no intrinsic symmetry. Part of the difficulty in achieving this purpose is in trying...