You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explains many fundamental ideas on the theory of distributions. The theory of partial differential equations is one of the synthetic branches of analysis that combines ideas and methods from different fields of mathematics, ranging from functional analysis and harmonic analysis to differential geometry and topology. This presents specific difficulties to those studying this field. This book, which consists of 10 chapters, is suitable for upper undergraduate/graduate students and mathematicians seeking an accessible introduction to some aspects of the theory of distributions. It can also be used for one-semester course.
The first two editions of An Introduction to Partial Differential Equations with MATLAB® gained popularity among instructors and students at various universities throughout the world. Plain mathematical language is used in a friendly manner to provide a basic introduction to partial differential equations (PDEs). Suitable for a one- or two-semester introduction to PDEs and Fourier series, the book strives to provide physical, mathematical, and historical motivation for each topic. Equations are studied based on method of solution, rather than on type of equation. This third edition of this popular textbook updates the structure of the book by increasing the role of the computational portion...
This reference book describes the exact solutions of the following types of mathematical equations: ● Algebraic and Transcendental Equations ● Ordinary Differential Equations ● Systems of Ordinary Differential Equations ● First-Order Partial Differential Equations ● Linear Equations and Problems of Mathematical Physics ● Nonlinear Equations of Mathematical Physics ● Systems of Partial Differential Equations ● Integral Equations ● Difference and Functional Equations ● Ordinary Functional Differential Equations ● Partial Functional Differential Equations The book delves into equations that find practical applications in a wide array of natural and engineering sciences, in...
Real quaternion analysis is a multi-faceted subject. Created to describe phenomena in special relativity, electrodynamics, spin etc., it has developed into a body of material that interacts with many branches of mathematics, such as complex analysis, harmonic analysis, differential geometry, and differential equations. It is also a ubiquitous factor in the description and elucidation of problems in mathematical physics. In the meantime real quaternion analysis has become a well established branch in mathematics and has been greatly successful in many different directions. This book is based on concrete examples and exercises rather than general theorems, thus making it suitable for an introd...
This book provides the first and second fundamental forms of surfaces on time scales. They are introduced minimal surfaces and geodesics on time scales. In the book are studied the covaraint derivatives on time scales, pseudo-spherical surfaces and \sigma_1, \sigma_2 manifolds on time scales.
This book covers multivariable and vector calculus. It can be used as a textbook for a one-semester course or self-study. It includes worked-through exercises, with answers provided for many of the basic computational ones and hints for the more complex ones.. This second edition features new exercises, new sections on twist and binormal vectors for curves in space, linear approximations, and the Laplace and Poisson equations.
This unique book presents decision analysis in the context of mathematical modeling and game theory. The author emphasizes and focuses on the model formulation and modeling-building skills required for decision analysis, as well as the technology to support the analysis. The primary objective of Decision Analysis through Modeling and Game Theory is illustrative in nature. It sets the tone through the introduction to mathematical modeling. The text provides a process for formally thinking about the problem and illustrates many scenarios and illustrative examples. These techniques and this approach center on the fact (a) decision makers at all levels must be exposed to the tools and techniques...
This book is focused on the qualitative theory of general quantum calculus, the modern name for the investigation of calculus without limits. It centers on designing, analysing and applying computational techniques for general quantum differential equations. The quantum calculus or q-calculus began with F.H. Jackson in the early twentieth century, but this kind of calculus had already been worked out by Euler and Jacobi. Recently, it has aroused interest due to high demand of mathematics that models quantum computing and the connection between mathematics and physics. Quantum calculus has many applications in different mathematical areas such as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and other sciences such as quantum theory, mechanics and the theory of relativity. The authors summarize the most recent contributions in this area. General Quantum Numerical Analysis is intended for senior undergraduate students and beginning graduate students of engineering and science courses. The twelve chapters in this book are pedagogically organized, each concluding with a section of practical problems.
The second edition of this successful and widely recognized textbook again focuses on discrete topics. The author recognizes two distinct paths of study and careers of actuarial science and financial engineering. This text can be very useful as a common core for both. Therefore, there is substantial material in Introduction to Financial Mathematics, Second Edition on the theory of interest (the first half of the book), as well as the probabilistic background necessary for the study of portfolio optimization and derivative valuation (the second half). A course in multivariable calculus is not required. The material in the first two chapters should go a long way toward helping students prepare...
This book is devoted to the qualitative theory of boundary value problems on time scales. It summarizes the most recent contributions in this area.