Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Harmonic Analysis and Applications
  • Language: en
  • Pages: 361

Harmonic Analysis and Applications

The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.

Recent Advances in Harmonic Analysis and Partial Differential Equations
  • Language: en
  • Pages: 300

Recent Advances in Harmonic Analysis and Partial Differential Equations

This volume is based on the AMS Special Session on Harmonic Analysis and Partial Differential Equations and the AMS Special Session on Nonlinear Analysis of Partial Differential Equations, both held March 12-13, 2011, at Georgia Southern University, Statesboro, Georgia, as well as the JAMI Conference on Analysis of PDEs, held March 21-25, 2011, at Johns Hopkins University, Baltimore, Maryland. These conferences all concentrated on problems of current interest in harmonic analysis and PDE, with emphasis on the interaction between them. This volume consists of invited expositions as well as research papers that address prospects of the recent significant development in the field of analysis an...

Integral Methods in Science and Engineering
  • Language: en
  • Pages: 311

Integral Methods in Science and Engineering

The quantitative and qualitative study of the physical world makes use of many mathematical models governed by a great diversity of ordinary, partial differential, integral, and integro-differential equations. An essential step in such investigations is the solution of these types of equations, which sometimes can be performed analytically, while at other times only numerically. This edited, self-contained volume presents a series of state-of-the-art analytic and numerical methods of solution constructed for important problems arising in science and engineering, all based on the powerful operation of (exact or approximate) integration. The volume may be used as a reference guide and a practical resource. It is suitable for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines.

Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1)
  • Language: en
  • Pages: 380

Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1)

  • Type: Book
  • -
  • Published: 2016-09-15
  • -
  • Publisher: Springer

Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book contains survey and expository articles by leading experts in their corresponding fields, and features fully-refereed, high-quality papers exploring new results and trends in spectral theory, mathematical physics, geometric function theory, and partial differential equations. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. Another shared research interest of the contributors of this volume lies in the area of applied harmonic an...

Analysis, Partial Differential Equations and Applications
  • Language: en
  • Pages: 342

Analysis, Partial Differential Equations and Applications

This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and pa...

Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2)
  • Language: en
  • Pages: 469

Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2)

  • Type: Book
  • -
  • Published: 2017-07-10
  • -
  • Publisher: Springer

This book is the second of a two volume series. Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book features fully-refereed, high-quality papers exploring new results and trends in weighted norm inequalities, Schur-Agler class functions, complex analysis, dynamical systems, and dyadic harmonic analysis. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. A survey of the two weight problem for the Hilbert transform and an expository article on the Clark model to the case of non-singul...

Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation
  • Language: en
  • Pages: 546

Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation

This book contains a collection of research articles and surveys on recent developments on operator theory as well as its applications covered in the IWOTA 2011 conference held at Sevilla University in the summer of 2011. The topics include spectral theory, differential operators, integral operators, composition operators, Toeplitz operators, and more. The book also presents a large number of techniques in operator theory.

Theory of Fundamental Bessel Functions of High Rank
  • Language: en
  • Pages: 123

Theory of Fundamental Bessel Functions of High Rank

In this article, the author studies fundamental Bessel functions for $mathrm{GL}_n(mathbb F)$ arising from the Voronoí summation formula for any rank $n$ and field $mathbb F = mathbb R$ or $mathbb C$, with focus on developing their analytic and asymptotic theory. The main implements and subjects of this study of fundamental Bessel functions are their formal integral representations and Bessel differential equations. The author proves the asymptotic formulae for fundamental Bessel functions and explicit connection formulae for the Bessel differential equations.

Adiabatic Evolution and Shape Resonances
  • Language: en
  • Pages: 102

Adiabatic Evolution and Shape Resonances

View the abstract.