You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Climate modeling and simulation teach us about past, present, and future conditions of life on earth and help us understand observations about the changing atmosphere and ocean and terrestrial ecology. Focusing on high-end modeling and simulation of earth's climate, Climate Modeling for Scientists and Engineers presents observations about the general circulations of the earth and the partial differential equations used to model the dynamics of weather and climate, covers numerical methods for geophysical flows in more detail than many other texts, discusses parallel algorithms and the role of high-performance computing used in the simulation of weather and climate, and provides supplemental lectures and MATLABĀ® exercises on an associated Web page.
In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as an expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model; the discretization of the model equations; the development of algorithms; parallelization; and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids - the Navier-Stokes equations - the authors look at the simulation of free surface flows; energy and chemical transport; and turbulence. Readers are enabled to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 92 black-and-white and 18 color illustrations. After reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and apply their new knowledge to other scientific fields.
This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The obje...
Practical Asymptotics is an effective tool for reducing the complexity of large-scale applied-mathematical models arising in engineering, physics, chemistry, and industry, without compromising their accuracy. It exploits the full potential of the dimensionless representation of these models by considering the special nature of the characteristic dimensionless quantities. It can be argued that these dimensionless quantities mostly assume extreme values, particularly for practical parameter settings. Thus, otherwise complicated models can be rendered far less complex and the numerical effort to solve them is greatly reduced. In this book the effectiveness of Practical Asymptotics is demonstrat...
This book aims to provide the readers with a wide panorama of different aspects related to Chaos, Complexity and Transport. It consists of a collection of contributions ranging from applied mathematics to experiments, presented during the CCT''07 conference (Marseilles, June 4OCo8, 2007). The book encompasses different traditional fields of physics and mathematics while trying to keep a common language among the fields, and targets a nonspecialized audience."
Until recently, measurable dynamics has been held as a highly theoretcal mathematical topic with few generally known obvious links for practitioners in areas of applied mathematics. However, the advent of high-speed computers, rapidly developing algorithms, and new numerical methods has allowed for a tremendous amount of progress and sophistication in efforts to represent the notion of a transfer operator discretely but to high resolution. This book connects many concepts in dynamical systems with mathematical tools from areas such as graph theory and ergodic theory. The authors introduce practical tools for applications related to measurable dynamical systems, coherent structures, and transport problems. The new and fast-developing computational tools discussed throughout the book allow for detailed analysis of real-world problems that are simply beyond the reach of traditional methods.
This volume presents a selection of expository papers on various topics in engineering mathematics. The papers concern model problems relating to, amongst others, the automobile and shipping industries, transportation networks and wave propagation. Among the methods treated are numerical methods, such as the finite element method and Newton's method, Karmarkar's interior point method and generalizations, and recurrence and induction in computer science. This volume will be of great interest to applied mathematicians, physicists and engineers interested in recent developments in engineering mathematics. The papers are written with an emphasis on exposition and should be accessible to all members of scientific community interested in modeling and solving real-life problems.