You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based around the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook or as a valuable resource for researchers.
"- Besides giving rigorous proofs for basic theorems of ODE, it also provides numerous examples arising from physical and biological science for readers to understand the theorems and their applications - Exercises are given at the end of each chapter for the reader to practice; some are challenging - This is also a good textbook for students aiming for applied mathematics with applications in Engineering - Some knowledge in Nonlinear Analysis in which we think is necessary for the students is presented in the book - For oscillatory solutions which occur in nature, we introduce the Poincare-Bendixson Theorem and its applications, Monotone Dynamical Systems, especially three-dimensional competitive systems and Hopf bifurcations in n-dimensional space - This text also provides a friendly introduction to Hamiltonian systems, written by co-author Kuo-Chang Chen, an expert in celestial mechanics"--
Written in a straightforward and easily accessible style, this volume is suitable as a textbook for advanced undergraduate or first-year graduate students in mathematics, physical sciences, and engineering. The aim is to provide students with a strong background in the theories of Ordinary Differential Equations, Dynamical Systems and Boundary Value Problems, including regular and singular perturbations. It is also a valuable resource for researchers.This volume presents an abundance of examples in physical and biological sciences, and engineering to illustrate the applications of the theorems in the text. Readers are introduced to some important theorems in Nonlinear Analysis, for example, Brouwer fixed point theorem and fundamental theorem of algebras. A chapter on Monotone Dynamical Systems takes care of the new developments in Ordinary Differential Equations and Dynamical Systems.In this third edition, an introduction to Hamiltonian Systems is included to enhance and complete its coverage on Ordinary Differential Equations with applications in Mathematical Biology and Classical Mechanics.
Basic concepts Zero-dimensional dynamics One-dimensional dynamics Two-dimensional dynamics Systems with 1.5 degrees of freedom Systems generated by three-dimensional vector fields Lyapunov exponents Appendix Bibliography Index.
"Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry." "This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory. Graduate students and research mathematicians interested in string theory in mathematics and physics will be interested in this workshop."--BOOK JACKET.
This two-part volume represents the proceedings of the Fifth International Congress of Chinese Mathematicians, held at Tsinghua University, Beijing, in December 2010. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics. Included are 60 papers based on lectures given at the conference.
This volume contains the proceedings of the AMS Special Session on Nonstandard Finite-Difference Discretizations and Nonlinear Oscillations, in honor of Ronald Mickens's 70th birthday, held January 9-10, 2013, in San Diego, CA. Included are papers on design and analysis of discrete-time and continuous-time dynamical systems arising in the natural and engineering sciences, in particular, the design of robust nonstandard finite-difference methods for solving continuous-time ordinary and partial differential equation models, the analytical and numerical study of models that undergo nonlinear oscillations, as well as the design of deterministic and stochastic models for epidemiological and ecolo...
First published in 1980. CRC Press is an imprint of Taylor & Francis.
This book is devoted to group-theoretic aspects of topological dynamics such as studying groups using their actions on topological spaces, using group theory to study symbolic dynamics, and other connections between group theory and dynamical systems. One of the main applications of this approach to group theory is the study of asymptotic properties of groups such as growth and amenability. The book presents recently developed techniques of studying groups of dynamical origin using the structure of their orbits and associated groupoids of germs, applications of the iterated monodromy groups to hyperbolic dynamical systems, topological full groups and their properties, amenable groups, groups of intermediate growth, and other topics. The book is suitable for graduate students and researchers interested in group theory, transformations defined by automata, topological and holomorphic dynamics, and theory of topological groupoids. Each chapter is supplemented by exercises of various levels of complexity.