You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this paper are presented and explored new sort of bipolar Neutrosophic closed set which is known as bipolar Neutrosophic feebly Bg-closed sets in BNTSs and furthermore talked about properties and portrayal.
In the present article, we deduce a characterization of BSVN detour interior and boundary vertices. We established the relations between BSVN cut node and BSVN detour boundary nodes. Further, we studied properties of BSVN boundary nodes and BSVN interior nodes. Application of detour boundary node, detour interior is given on modeling wireless sensor network in terms of BSVN graphs.
The minimal spanning tree (MST) algorithms by using the edges weights were presented mainly by Prim’s and Kruskal’s algorithms. In this article we use the weights for the bipolar neutrosophic edges by using the score functions with the new model algorithms namely bipolar neutrosophic Prim’s algorithm and bipolar neutrosophic Kruskal’s algorithm. Further, we use the score functions to get the more appropriate results based on the algorithms.
In the present article, we deduce a characterization of SVN eccentric vertex. The concepts of SVN graph are examined. Also we obtained some definitions SVN on a vertex like SVN eccentric vertex, SVN radius, SVN diameter, SVN centered and SVN periphery. We derive some important results based on these SVN radius, diameter, center and periphery.
We extend the topological spaces to bipolar neutrosophic study. The concept of topological spaces in neutrosophic theory recently discussed by many authors on semi generalized conditions of open and closed sets. In this present manuscript the topological space is defined on bipolar pre-closed neutrosophic sets (BPCNS).
In this article deals, different areas with uncertainty data information in bipolar soft neutrosophic topology. In the past time, so many authors are discussed about neutrosophic and bipolar neutrosophic theory. Soft neutrosophic Set theory was derived by Maji. The present article extended to bipolar soft spatial region. Also we obtained definitions of Soft open, soft closed, soft pre-open, soft pre- closed on the bipolar neutrosophic.
In the present article, we deduced a characterization of Bipolar Single Valued Neutrosophic (BSVN) radius and eccentricity of the vertex based on Bipolar Single Valued Neutrosophic set(BSVNS) detour. We obtained some definitions BSVN on a vertex like BSVN detour eccentric vertex, BSVN detour radius, BSVN detour diameter, BSVN detour centered and BSVN detour periphery. We derived some important results based on these BSVN detour radius, diameter, center and periphery.
This book enables the readers to design, optimize, and control complex systems with greater precision and efficiency. It further provides practical insights and presents case studies for readers interested in exploring the intersections between artificial intelligence and industry. This book discusses important topics such as algorithmic design, mathematical modeling, natural language processing, machine learning, and computer vision. This book: Explores practical applications of artificial intelligence in engineering, including optimization, predictive modeling, decision‐making, and control systems Provides real‐world examples of the applications of artificial intelligence in engineerin...