You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Surface Engineering of Metals provides basic definitions of classical and modern surface treatments, addressing mechanisms of formation, microstructure, and properties of surface layers. Part I outlines the fundamentals of surface engineering, presents the history of its development, and proposes a two-category classification of surface layers. Discussions include the basic potential and usable properties of superficial layers and coatings, explaining their concept, interaction with other properties, and the significance of these properties for proper selection and functioning. Part II provides an original classification of the production methods of surface layers. Discussions include the latest technologies in this field, characterized by directional or beam interaction of particles or of the heating medium with the treat surface.
This book presents the most important thermochemical and physical techniques of boriding. The formation and characterization of different boride layers or boride coatings are compared in this book. The author analyzes the technological aspects of boriding processes, presenting the advantages and disadvantages of each method. The effect of the boriding techniques on the microstructure of borided materials are also indicated. The mechanism of formation of active boron atoms or ions and the phenomena during re-melting of alloying material together with the substrate are described. Special attention is devoted to powder-pack boriding, electrochemical boriding in borax, gas boriding, plasma gas or paste boriding and laser or plasma surface alloying with boron, acknowledged as the most important current methods in boriding. The thermodynamics of gas boriding is also analyzed.
A major goal of materials science is to create new engineering materials and optimize their cost and performance. Understanding how adjacent materials behave at their borders is an essential part of this process. Grain boundaries are the longest-known crystal defects, but although they were discovered in the mid-eighteenth century, until quite rece
This volume presents new trends and developments in soft computing techniques. Topics include: neural networks, fuzzy systems, evolutionary computation, knowledge discovery, rough sets, and hybrid methods. It also covers various applications of soft computing techniques in economics, mechanics, medicine, automatics and image processing. The book contains contributions from internationally recognized scientists, such as Zadeh, Bubnicki, Pawlak, Amari, Batyrshin, Hirota, Koczy, Kosinski, Novák, S.-Y. Lee, Pedrycz, Raudys, Setiono, Sincak, Strumillo, Takagi, Usui, Wilamowski and Zurada. An excellent overview of soft computing methods and their applications.
The contributions in this volume concentrate on recent progress in CVD, PVD, thermal spraying, epitaxial growth, sol/gel and related techniques used to deposit monolayer, multilayer, composite, hybrid and multifunctional ceramic thin/thick films and coatings on metal and ceramic substrates. The 71 papers, including 9 invited, report on the results of studies on the characterization of structural and functional properties of materials for a number of applications such as wear, erosion, corrosion, thermal protection, and uses in electronic, magnetic, optical and opto-electronic devices.
None