You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over the last decade, neural stem cell research has provided penetrating insights into the plasticity and regenerative potential of the brain. Stem cells have been isolated from embryonic as well as adult central nervous system (CNS). Many non-CNS mammalian tissues also contain stem cells with a more limited repertoire: the replacement of tissue-specific cells throughout the li- time of the organism. Progress has been made in understanding fundamental stem cell properties that depend on the interplay of extrinsic signaling factors with intrinsic genetic programs within critical time frames. With this growing knowledge, scientists have been able to change a neural stem cell’s fate. - der ce...
Active neuroscientists survey NSCs as potential tools for central nervous system and spinal cord repair by explaining their clinically significant fundamental properties, manipulations, and potential therapeutic paradigms. Their discussion of the fundamental biology of NSCs illustrates the signaling pathways that regulate stem cell division and differentiation, and defines the methods of NSC expansion and propagation, neuromorphogenesis, the factors determining cell fate both in vitro and in situ, and the induction of self-reparative processes within the brain. They also present strategies that may lead to fruitful clinical applications in the near future. These range from the replacement of degenerated, dysfunctional, or maldeveloped cells to the provision of factors that may protect, correct, recruit, promote self-repair, or mediate the connectivity of host cells.
Developing the second edition of Neural Development and Stem Cells was neces- tated by the rapid increase in our knowledge of the development of the nervous system. It has become increasingly clear that stem cells are a heterogeneous population that changes extensively during development. Perhaps the most important advance in our understanding of stem cell behavior has been the realization that regionalization of stem cells occurs early in development and this bias toward differentiation in phe- types of neurons or cells characteristic of a particular part of the brain appears to persist even after prolonged culture. We have therefore included additional chapters on olf- tory epithelial stem...
In this thoroughly updated and revised edition of his much praised book, Paul L. Wood and a panel of leading researchers capture these new developments in a masterful synthesis of what is known today about the inflammatory mediators and cells involved in neurodegenerative diseases. This second edition contains extensive updates on the mediators produced by microglia and their role in neuroinflammatory-induced neuronal lysis. There is also increased coverage of the animal models used in the study of neuroinflammatory mechanisms, of the new imaging methods that allow the noninvasive evaluation of microglial activation in human neurodegernerative disorders, and of the role of neuroinflammation in amyloid-dependent neuronal lysis.
The field of neural transplantation is at a crucial stage, with important clinical trials on transplantation in patients with Parkinson's disease nearing completion and novel, alternative approaches to fetal transplantation being developed. This timely book brings together leading neuroscientists, clinicians, and cell and developmental biologists to discuss the use of neural transplants in neurodegenerative disorders, such as Parkinson's disease, Huntington's chorea, amyotrophic lateral sclerosis, multiple sclerosis and spinal cord injury. There is also extensive coverage of the potential alternatives to freshly derived fetal tissue as the source of transplants, for example xenografts, encapsulated cells and immortalized stem cells. With authoritative contributions and lively discussion sections, this book presents much new and exciting work in this field and identifies promising new research directions.
The striatum is the principal input structure of the basal ganglia. Numerically, the great majority of neurons in the striatum are spiny projection neurons, which produce the inhibitory output of the striatum to the globus pallidum and substantia nigra. The major glutamatergic afferents to the striatum from the cerebral cortex make monosynaptic contact with spiny projection neurons. The dopaminergic afferents from the substantia nigra also synapse directly on the spiny projection neurons. Thus, the spiny projection neurons play a crucial role in the input–output operations of the striatum by integrating glutamatergic cortical inputs with dopaminergic inputs and producing the output to othe...
Aggression is a highly conserved behavioral adaptation that evolved to help org- isms compete for limited resources and thereby ensure their survival. However, in modern societies where resources such as food, shelter, etc. are not limiting, aggr- sion has become a major cultural problem worldwide presumably because of its deep seeded roots in the neuronal circuits and neurochemical pathways of the human brain. In Neurobiology of Aggression: Understanding and Preventing Violence, leading experts in the fields of the neurobiology, neurochemistry, genetics, and behavioral and cultural aspects of aggression and violence provide a comprehensive collection of review articles on one of the most im...
Many questions related to stem cell properties and neural stem cell lineage and differentiation still linger. This second edition revises and expands upon the successful first edition in order to provide the most current, cutting-edge methods of today for the scientists working to answer these questions. The use of these step-by-step, readily reproducible laboratory protocols will allow investigators to produce pure populations that can serve as a means of understanding the biology of neural stem cells and adapting them for transplantation into disease models. This is an excellent source of information and inspiration.
As our world continues to evolve, the field of regenerative medicine f- lows suit. Although many modern day therapies focus on synthetic and na- ral medicinal treatments for brain repair, many of these treatments and prescriptions lack adequate results or only have the ability to slow the p- gression of neurological disease or injury. Cell therapy, however, remains the most compelling treatment for neurodegenerative diseases, disorders, and injuries, including Parkinson’s disease, Huntington’s disease, traumatic brain injury, and stroke, which is expanded upon in more detail in Chapter 1 by Snyder and colleagues. Cell therapy is also unique in that it is the only therapeutic strategy tha...