You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Singularity theory appears in numerous branches of mathematics, as well as in many emerging areas such as robotics, control theory, imaging, and various evolving areas in physics. The purpose of this proceedings volume is to cover recent developments in singularity theory and to introduce young researchers from developing countries to singularities in geometry and topology. The contributions discuss singularities in both complex and real geometry. As such, they provide a natural continuation of the previous school on singularities held at ICTP (1991), which is recognized as having had a major influence in the field.
Singularity theory appears in numerous branches of mathematics, as well as in many emerging areas such as robotics, control theory, imaging, and various evolving areas in physics. The purpose of this proceedings volume is to cover recent developments in singularity theory and to introduce young researchers from developing countries to singularities in geometry and topology.The contributions discuss singularities in both complex and real geometry. As such, they provide a natural continuation of the previous school on singularities held at ICTP (1991), which is recognized as having had a major influence in the field.
Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.
Complex Analytic Geometry is a subject that could be termed, in short, as the study of the sets of common zeros of complex analytic functions. It has a long history and is closely related to many other fields of Mathematics and Sciences, where numerous applications have been found, including a recent one in the Sato hyperfunction theory.This book is concerned with, among others, local invariants that arise naturally in Complex Analytic Geometry and their relations with global invariants of the manifold or variety. The idea is to look at them as residues associated with the localization of some characteristic classes. Two approaches are taken for this — topological and differential geometri...
This book offers a selection of papers based on talks at the Ninth International Workshop on Real and Complex Singularities, a series of biennial workshops organized by the Singularity Theory group at Sao Carlos, S.P., Brazil. The papers deal with all the different topics in singularity theory and its applications, from pure singularity theory related to commutative algebra and algebraic geometry to those topics associated with various aspects of geometry to homotopytheory.
None
On April 7-10, 1980, the American Mathematical Society sponsored a Symposium on the Mathematical Heritage of Henri Poincari, held at Indiana University, Bloomington, Indiana. This work presents the written versions of all but three of the invited talks presented at this Symposium. It contains 2 papers by invited speakers who aren't able to attend.
Offers an overview of selected topics on the topology of singularities, with emphasis on its relations to other branches of geometry and topology. This book studies real analytic singularities which arise from the topological and geometric study of holomorphic vector fields and foliations.
Contains sections on Singularities of analytic spaces, Function theory and real analysis, Compact complex manifolds, and Survey papers.
This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski’s equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic fun...