You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A detailed introduction to cubic hypersurfaces, applying diverse techniques to a central class of algebraic varieties.
This volume contains the proceedings of the AMS Special Session on Higher Genus Curves and Fibrations in Mathematical Physics and Arithmetic Geometry, held on January 8, 2016, in Seattle, Washington. Algebraic curves and their fibrations have played a major role in both mathematical physics and arithmetic geometry. This volume focuses on the role of higher genus curves; in particular, hyperelliptic and superelliptic curves in algebraic geometry and mathematical physics. The articles in this volume investigate the automorphism groups of curves and superelliptic curves and results regarding integral points on curves and their applications in mirror symmetry. Moreover, geometric subjects are addressed, such as elliptic 3 surfaces over the rationals, the birational type of Hurwitz spaces, and links between projective geometry and abelian functions.
This is a selection of high quality articles on number theory by leading figures.
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
This volume contains the proceedings of the Korea-Japan Conference on Algebraic Geometry in honor of Igor Dolgachev on his sixtieth birthday. The articles in this volume explore a wide variety of problems that illustrate interactions between algebraic geometry and other branches of mathematics. Among the topics covered by this volume are algebraic curve theory, algebraic surface theory, moduli space, automorphic forms, Mordell-Weil lattices, and automorphisms of hyperkahler manifolds. This book is an excellent and rich reference source for researchers.
Algebraic Geometry Codes: Advanced Chapters is devoted to the theory of algebraic geometry codes, a subject related to local_libraryBook Catalogseveral domains of mathematics. On one hand, it involves such classical areas as algebraic geometry and number theory; on the other, it is connected to information transmission theory, combinatorics, finite geometries, dense packings, and so on. The book gives a unique perspective on the subject. Whereas most books on coding theory start with elementary concepts and then develop them in the framework of coding theory itself within, this book systematically presents meaningful and important connections of coding theory with algebraic geometry and number theory. Among many topics treated in the book, the following should be mentioned: curves with many points over finite fields, class field theory, asymptotic theory of global fields, decoding, sphere packing, codes from multi-dimensional varieties, and applications of algebraic geometry codes. The book is the natural continuation of Algebraic Geometric Codes: Basic Notions by the same authors. The concise exposition of the first volume is included as an appendix.
In this volume, an abstract theory of 'forms' is developed, thus providing a conceptually satisfying framework for the classification of forms of Fermat equations. The classical results on diagonal forms are extended to the broader class of all forms of Fermat varieties.The main topic is the study of forms of the Fermat equation over an arbitrary field K. Using Galois descent, all such forms are classified; particularly, a complete and explicit classification of all cubic binary equations is given. If K is a finite field containing the d-th roots of unity, the Galois representation on l-adic cohomology (and so in particular the zeta function) of the hypersurface associated with an arbitrary form of the Fermat equation of degree d is computed.
A Fields medalist recounts his lifelong effort to uncover the geometric shape—the Calabi-Yau manifold—that may store the hidden dimensions of our universe. Harvard geometer Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world’s most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal–winning proof of the Calabi ...