You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The multivariate normal distribution; Estimation of the mean vector and the covariance matrix; The distributions and uses of sample correlation coefficients; The generalized T2 statistic; Classification of observations; The distribution of the sample covariance matrix and the sample generalized variance; Testing the general linear hypothesis; analysis of variance; Testing independence of sets of variates; Testing hypotheses of equality of covariance matrices and equality of mean vectors and covariance matrices; Principal components; Canonical correlation and canonical variables; The distribution of certain characteristic roots and vectors that do not depend on parameters; A review of some other work in multivariate analysis.
A non-calculus based introduction for students studying statistics, business, engineering, health sciences, social sciences, and education. It presents a thorough coverage of statistical techniques and includes numerous examples largely drawn from actual research studies. Little mathematical background is required and explanations of important concepts are based on providing intuition using illustrative figures and numerical examples. The first part shows how statistical methods are used in diverse fields in answering important questions, while part two covers descriptive statistics and considers the organisation and summarisation of data. Parts three to five cover probability, statistical inference, and more advanced statistical techniques.
These collected papers comprise the 109 research papers published by T.W.Anderson from 1943 to 1985. They cover a wide area of probability, statistics, econometrics, and matrix theory, including multivariate statistics and time series analysis.