You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Collection of 550 revised, state-of-the art contributions on most recent advances in bridge maintenance, safety, management and life-cycle performance from leading experts in this area.
Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.
Life-Cycle Civil Engineering contains the papers presented at the First International Symposium on Life-Cycle Civil Engineering (IALCCE 08), held in Villa Monastero, Varenna, Lake Como, Italy, 10-14 June, 2008. It consists of a book and a CD-ROM containing 150 papers, including eight keynote papers and 142 technical contributions from 28 countries.
This bookcontains papers covering a wide range of studies on life-cycle performance analysis, design, maintenance, monitoring, management, and cost of civil infrastructure systems. Topics include reliability and optimization as design basis tools, monitoring systems, life-cycle cost analysis and management, bridge management systems, and quality control acceptance criteria. The book also discusses seismic reliability analysis of deteriorating structures, bridge inspection strategies, life-cycle cost analysis of structures on a network level, optimal risk-based design of infrastructures, updating bridge reliability using load monitoring data and statistics of extremes, rehabilitation of bridges, and lifetime analysis and structural repair of civil infrastructure systems.
An exclusive collection of papers introducing current and frontier technologies of special significance to the planning, design, construction, and maintenance of civil infrastructures. This volume is intended for professional and practicing engineers involved with infrastructure systems such as roadways, bridges, buildings, power generating and distribution systems, water resources, environmental facilities, and other civil infrastructure systems. Contributions are by internationally renowned and eminent experts, and cover: 1. Life-cycle cost and performance; 2.Reliability engineering; 3. Risk assessment and management; 4. Optimization methods and optimal design; 5. Role of maintenance, inspection, and repair; 6. Structural and system health monitoring; 7. Durability, fatigue and fracture; 8. Corrosion technology for metal and R/C structures; 9. Concrete materials and concrete structures.
With contributions from leading experts, this book addresses all major aspects of bridge maintenance, safety, and management and delineates the state of the art in bridge maintenance and safety. It offers advice for decision making in bridge maintenance, safety, management, and cost for the purpose of enhancing the welfare of society. Topics include deterioration modeling, emerging technologies, field testing, financial planning, health monitoring, high-performance materials, innovations, load capacity assessment, maintenance strategies, new technology and materials, nondestructive testing, future traffic demands, reliability and risk, sustainable materials, whole-life costing, and more.
Our knowledge to model, design, analyse, maintain, manage and predict the life-cycle performance of infrastructure systems is continually growing. However, the complexity of these systems continues to increase and an integrated approach is necessary to understand the effect of technological, environmental, economic, social, and political interactions on the life-cycle performance of engineering infrastructure. In order to accomplish this, methods have to be developed to systematically analyse structure and infrastructure systems, and models have to be formulated for evaluating and comparing the risks and benefits associated with various alternatives. Civil engineers must maximize the life-cy...
Focussing on structural reliability methods, reliability-based optimization, structural system reliability and risk analysis, lifetime performance and various applications in civil engineering. Invaluable to all concerned with structural system reliability and optimization, especially students, engineers, and workers in research and development.
None