Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning
  • Language: en
  • Pages: 351

Machine Learning

This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.

Machine Learning
  • Language: en
  • Pages: 351

Machine Learning

Presents carefully selected supervised and unsupervised learning methods from basic to state-of-the-art,in a coherent statistical framework.

Backward Simulation Methods for Monte Carlo Statistical Inference
  • Language: en
  • Pages: 158

Backward Simulation Methods for Monte Carlo Statistical Inference

  • Type: Book
  • -
  • Published: 2013-08
  • -
  • Publisher: Unknown

Presents and discusses various backward simulation methods for Monte Carlo statistical inference. The focus is on SMC-based backward simulators, which are useful for inference in analytically intractable models, such as nonlinear and/or non-Gaussian SSMs, but also in more general latent variable models.

Using Inertial Sensors for Position and Orientation Estimation
  • Language: en
  • Pages: 174

Using Inertial Sensors for Position and Orientation Estimation

  • Type: Book
  • -
  • Published: 2018-01-31
  • -
  • Publisher: Unknown

Microelectromechanical system (MEMS) inertial sensors have become ubiquitous in modern society. Built into mobile telephones, gaming consoles, virtual reality headsets, we use such sensors on a daily basis. They also have applications in medical therapy devices, motion-capture filming, traffic monitoring systems, and drones. While providing accurate measurements over short time scales, this diminishes over longer periods. To date, this problem has been resolved by combining them with additional sensors and models. This adds both expense and size to the devices. This tutorial focuses on the signal processing aspects of position and orientation estimation using inertial sensors. It discusses different modelling choices and a selected number of important algorithms that engineers can use to select the best options for their designs. The algorithms include optimization-based smoothing and filtering as well as computationally cheaper extended Kalman filter and complementary filter implementations. Engineers, researchers, and students deploying MEMS inertial sensors will find that this tutorial is an essential monograph on how to optimize their designs.

Elements of Sequential Monte Carlo
  • Language: en
  • Pages: 134

Elements of Sequential Monte Carlo

  • Type: Book
  • -
  • Published: 2019-11-12
  • -
  • Publisher: Unknown

Written in a tutorial style, this monograph introduces the basics of Sequential Monte Carlo, discusses practical issues, and reviews theoretical results before guiding the reader through a series of advanced topics to give a complete overview of the topic and its application to machine learning problems.

Performance and Implementation Aspects of Nonlinear Filtering
  • Language: en
  • Pages: 213

Performance and Implementation Aspects of Nonlinear Filtering

Nonlinear filtering is an important standard tool for information and sensor fusion applications, e.g., localization, navigation, and tracking. It is an essential component in surveillance systems and of increasing importance for standard consumer products, such as cellular phones with localization, car navigation systems, and augmented reality. This thesis addresses several issues related to nonlinear filtering, including performance analysis of filtering and detection, algorithm analysis, and various implementation details. The most commonly used measure of filtering performance is the root mean square error (RMSE), which is bounded from below by the Cramér-Rao lower bound (CRLB). This th...

Machine learning using approximate inference
  • Language: en
  • Pages: 62

Machine learning using approximate inference

Automatic decision making and pattern recognition under uncertainty are difficult tasks that are ubiquitous in our everyday life. The systems we design, and technology we develop, requires us to coherently represent and work with uncertainty in data. Probabilistic models and probabilistic inference gives us a powerful framework for solving this problem. Using this framework, while enticing, results in difficult-to-compute integrals and probabilities when conditioning on the observed data. This means we have a need for approximate inference, methods that solves the problem approximately using a systematic approach. In this thesis we develop new methods for efficient approximate inference in p...

A First Course in Quantitative Finance
  • Language: en
  • Pages: 599

A First Course in Quantitative Finance

Using stereoscopic images and other novel pedagogical features, this book offers a comprehensive introduction to quantitative finance.

AI and Learning Systems
  • Language: en
  • Pages: 274

AI and Learning Systems

Over the last few years, interest in the industrial applications of AI and learning systems has surged. This book covers the recent developments and provides a broad perspective of the key challenges that characterize the field of Industry 4.0 with a focus on applications of AI. The target audience for this book includes engineers involved in automation system design, operational planning, and decision support. Computer science practitioners and industrial automation platform developers will also benefit from the timely and accurate information provided in this work. The book is organized into two main sections comprising 12 chapters overall: •Digital Platforms and Learning Systems •Industrial Applications of AI

Medical Image Computing and Computer Assisted Intervention – MICCAI 2024
  • Language: en
  • Pages: 819