You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Written by a world expert on the subject, Origametry is the first complete reference on the mathematics of origami. It is an essential reference for researchers of origami mathematics and applications in physics, engineering, and design. Educators, students, and enthusiasts will also enjoy this fascinating account of the mathematics of folding.
Origami, the art of paper folding, has a rich mathematical theory. Early investigations go back to at least the 1930s, but the twenty-first century has seen a remarkable blossoming of the mathematics of folding. Besides its use in describing origami and designing new models, it is also finding real-world applications from building nano-scale robots to deploying large solar arrays in space. Written by a world expert on the subject, Origametry is the first complete reference on the mathematics of origami. It brings together historical results, modern developments, and future directions into a cohesive whole. Over 180 figures illustrate the constructions described while numerous 'diversions' provide jumping-off points for readers to deepen their understanding. This book is an essential reference for researchers of origami mathematics and its applications in physics, engineering, and design. Educators, students, and enthusiasts will also find much to enjoy in this fascinating account of the mathematics of folding.
Project Origami: Activities for Exploring Mathematics, Second Edition presents a flexible, discovery-based approach to learning origami-math topics. It helps readers see how origami intersects a variety of mathematical topics, from the more obvious realm of geometry to the fields of algebra, number theory, and combinatorics. With over 100 new pages, this updated and expanded edition now includes 30 activities and offers better solutions and teaching tips for all activities. The book contains detailed plans for 30 hands-on, scalable origami activities. Each activity lists courses in which the activity might fit, includes handouts for classroom use, and provides notes for instructors on solutions, how the handouts can be used, and other pedagogical suggestions. The handouts are also available on the book’s CRC Press web page. Reflecting feedback from teachers and students who have used the book, this classroom-tested text provides an easy and entertaining way for teachers to incorporate origami into a range of college and advanced high school math courses. Visit the author’s website for more information.
The book contains papers from the proceedings of the 3rd International Meeting of Origami Science, Math, and Education, sponsored by OrigamiUSA. They cover topics ranging from the mathematics of origami using polygon constructions and geometric projections, applications, and science of origami, and the use of origami in education.
Origami5 continues in the excellent tradition of its four previous incarnations, documenting work presented at an extraordinary series of meetings that explored the connections between origami, mathematics, science, technology, education, and other academic fields.The fifth such meeting, 5OSME (July 13-17, 2010, Singapore Management University) fol
Did you know that any straight-line drawing on paper can be folded so that the complete drawing can be cut out with one straight scissors cut? That there is a planar linkage that can trace out any algebraic curve, or even 'sign your name'? Or that a 'Latin cross' unfolding of a cube can be refolded to 23 different convex polyhedra? Over the past decade, there has been a surge of interest in such problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this treatment gives hundreds of results and over 60 unsolved 'open problems' to inspire further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Aimed at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from school students to researchers.
Robert J. Lang, one of the worlds foremost origami artists and scientists, presents the never-before-described mathematical and geometric principles that allow anyone to design original origami, something once restricted to an elite few. From the theoretical underpinnings to detailed step-by-step folding sequences, this book takes a modern look at
The art of origami, or paper folding, is carried out using a square piece of paper to obtain attractive figures of animals, flowers or other familiar figures. It is easy to see that origami has links with geometry. Creases and edges represent lines, intersecting creases and edges make angles, while the intersections themselves represent points. Because of its manipulative and experiential nature, origami could become an effective context for the learning and teaching of geometry.In this unique and original book, origami is an object of mathematical exploration. The activities in this book differ from ordinary origami in that no figures of objects result. Rather, they lead the reader to study...
The last secret of the Cold War can finally be revealed: behind the Iron Curtain, people were folding! Communities of folders who were isolated from the origami establishment have always developed exciting new origami models. Russian Origami is full of such exciting projects. From a matrioshka doll to a space rocket, these models will delight and inspire both beginning and advanced folders. Each project has step-by-step diagrams, clear instructions, and a photo of the completed model. Included are such traditional favorites as a flapping dove and an inflatable rabbit, as well as some original delights, such as a Tyrolean Hat and a Russian star.