You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for e...
Focusing on the increased interplay of theoretical advances in nonlinear hyperbolic systems, completely integrable systems, and evolutionary systems of nonlinear partial differential equations, this title contains papers grouped in sections: integrable systems, hyperbolic systems, variational problems, evolutionary systems, and dispersive systems.
This IMA Volume in Mathematics and its Applications MICROLOCAL ANALYSIS AND NONLINEAR WAVES is based on the proceedings of a workshop which was an integral part of the 1988- 1989 IMA program on "Nonlinear Waves". We thank Michael Beals, Richard Melrose and Jeffrey Rauch for organizing the meeting and editing this proceedings volume. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE Microlocal analysis is natural and very successful in the study of the propagation of linear hyperbolic waves. For example consider the initial value problem Pu = f E e'(RHd), supp f C {t ;::: O} u = 0 for t
This volume presents original research papers and expository articles from the conference in honour of Walter A. Strauss's 60th birthday, held at Brown University in Providence, Rhode Island. The book offers a collection of original papers and expository articles mainly devoted to the study of nonlinear wave equations. The articles cover a wide range of topics, including scattering theory, dispersive waves, classical field theory, mathematical fluid dynamics, kinetic theory, stability theory, and variational methods. The book offers a cross-section of current trends and research directions in the study of nonlinear wave equations and related topics.
This volume contains the proceedings of the 1999 International Conference on Differential Equations and Mathematical Physics. The contributions selected for this volume represent some of the most important presentations by scholars from around the world on developments in this area of research. The papers cover topics in the general area of linear and nonlinear differential equations and their relation to mathematical physics, such as multiparticle Schrödinger operators, stability of matter, relativity theory, fluid dynamics, spectral and scattering theory including inverse problems. Titles in this series are co-published with International Press, Cambridge, MA.
These two volumes of 47 papers focus on the increased interplay of theoretical advances in nonlinear hyperbolic systems, completely integrable systems, and evolutionary systems of nonlinear partial differential equations. The papers both survey recent results and indicate future research trends in these vital and rapidly developing branches of PDEs. The editor has grouped the papers loosely into the following five sections: integrable systems, hyperbolic systems, variational problems, evolutionary systems, and dispersive systems. However, the variety of the subjects discussed as well as their many interwoven trends demonstrate that it is through interactive advances that such rapid progress has occurred. These papers require a good background in partial differential equations. Many of the contributors are mathematical physicists, and the papers are addressed to mathematical physicists (particularly in perturbed integrable systems), as well as to PDE specialists and applied mathematicians in general.
The analysis and interpretation of mathematical models is an essential part of the modern scientific process. Topics in Applied Mathematics and Modeling is designed for a one-semester course in this area aimed at a wide undergraduate audience in the mathematical sciences. The prerequisite for access is exposure to the central ideas of linear algebra and ordinary differential equations. The subjects explored in the book are dimensional analysis and scaling, dynamical systems, perturbation methods, and calculus of variations. These are immense subjects of wide applicability and a fertile ground for critical thinking and quantitative reasoning, in which every student of mathematics should have ...
This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.
The International Conference on Hyperbolic Problems: Theory, Numerics and Applications, ``HYP2008'', was held at the University of Maryland from June 9-13, 2008. This was the twelfth meeting in the bi-annual international series of HYP conferences which originated in 1986 at Saint-Etienne, France, and over the last twenty years has become one of the highest quality and most successful conference series in Applied Mathematics. This book, the second in a two-part volume, contains more than sixty articles based on contributed talks given at the conference. The articles are written by leading researchers as well as promising young scientists and cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ``hyperbolic PDEs''. This volume will bring readers to the forefront of research in this most active and important area in applied mathematics.
This volume is the proceedings of the 14th MSJ International Research Institute "Asymptotic Analysis and Singularity", which was held at Sendai, Japan in July 2005. The proceedings contain survey papers and original research papers on nonlinear partial differential equations, dynamical systems, calculus of variations and mathematical physics.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America