You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A short, provocative book about why "useless" science often leads to humanity's greatest technological breakthroughs A forty-year tightening of funding for scientific research has meant that resources are increasingly directed toward applied or practical outcomes, with the intent of creating products of immediate value. In such a scenario, it makes sense to focus on the most identifiable and urgent problems, right? Actually, it doesn't. In his classic essay "The Usefulness of Useless Knowledge," Abraham Flexner, the founding director of the Institute for Advanced Study in Princeton and the man who helped bring Albert Einstein to the United States, describes a great paradox of scientific rese...
How can we explain the fundamental paradox of living matter, which combines stability and robustness of form with constant internal dynamics? It is not only the genetic information contained in every cell, but also numerous stochastic biomolecular processes that are at work in morphogenesis. In addition, the shaping of an organism is driven by mechanical forces that operate within and between cells, across tissues and organs. The dynamics of morphogenesis is a self-organized process that emerges from biological control and physical constraints at all scales. Its study is currently bringing together a fast-growing interdisciplinary community that observes, analyses and models living organisms.
For more than 30 years, Current Topics in Developmental Biology has provided a forum for dissemination and discussion of new ideas and thought in developmental biology. Bringing together a series of articles on the structural, functional, and developmental characteristics of epithelials, this thematic volume represents a timely and valuable contribution to an exciting and multidisciplinary field of study. Because defects in epithelial function and growth control play a major role in human disease-cancerous tumors, spina bifida, cardiac malformations, for example-this volume will be of particular interest to researchers working in cancer drug design and development and those working in therap...
Understanding how a multicellular animal develops from a single cell (the fertilized egg) poses one of the greatest challenges in biology today. Development from egg to adult involves the sequential expression of virtually the whole of an organism's genetic instructions both in the mother as she lays down developmental cues in the egg, and in the embryo itself. Most of our present information on the role of genes in development comes from the invertebrate fruit fly, Drosophila. The two authors of this text (amongst the foremost authorities in the world) follow the developmental process from fertilization through the primitive structural development of the body plan of the fly after cleavage ...
Pattern Formation in Morphogenesis is a rich source of interesting and challenging mathematical problems. The volume aims at showing how a combination of new discoveries in developmental biology and associated modelling and computational techniques has stimulated or may stimulate relevant advances in the field. Finally it aims at facilitating the process of unfolding a mutual recognition between Biologists and Mathematicians of their complementary skills, to the point where the resulting synergy generates new and novel discoveries. It offers an interdisciplinary interaction space between biologists from embryology, genetics and molecular biology who present their own work in the perspective of the advancement of their specific fields, and mathematicians who propose solutions based on the knowledge grasped from biologists.
Progress in Molecular Biology and Translational Science provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their fields and abundant references. Volume 126 features in-depth reviews that focus on the tools required to investigate mechanotransduction. Additional chapters focus on how we can use these tools to answer fundamental questions about the interaction of physical forces with cell biology, morphogenesis, and function of mature structures. Chapters in the volume are authored by a unique combination of cell biologists and engineers, providing a range of perspectives on mechanotransduction. - Provides a unique combination of perspectives from biologists and engineers - Engaging to people of many training backgrounds
An essential introduction to the physics of active matter and its application to questions in biology In recent decades, the theory of active matter has emerged as a powerful tool for exploring the differences between living and nonliving states of matter. The Restless Cell provides a self-contained, quantitative description of how the continuum theory of matter has been generalized to account for the complex and sometimes counterintuitive behaviors of living materials. Christina Hueschen and Rob Phillips begin by illustrating how classical field theory has been used by physicists to describe the transport of matter by diffusion, the elastic deformations of solids, and the flow of fluids. Dr...
This volume of Progress in Molecular Biology and Translational Science focuses on the most recent research surrounding Cadherins from top experts in the field. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Switch articulates a biophysical perspective on signaling, showing how allostery—a powerful explanation of how molecules function across all biological domains—can be reformulated using equilibrium statistical mechanics, applied to diverse biological systems exhibiting switching behaviors, and successfully unify seemingly unrelated phenomena. Rob Phillips weaves together allostery and statistica...