You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems. Offering a systematic treatment of SLS algorithms, this book examines the general concepts and specific instances of SLS algorithms and considers their development, analysis and application.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this r...
This book constitutes the refereed proceedings of the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS 2006, held in Brussels, Belgium, in September 2006. The 27 revised full papers, 23 revised short papers, and 12 extended abstracts presented were carefully reviewed and selected from 115 submissions.
This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.
What is this book good for? Imagine you are a computer scientist working in the bioinformatics area. P- bably you will be a member of a highly interdisciplinary team consisting of biologists, chemists, mathematicians, computer scientists ranging from p- grammers to algorithm engineers, and eventually people from various further ?elds. A major problem within such interdisciplinary teams is always to ?nd some common language, and, for each member of some discipline, to have profound knowledge of what are the notions, basic concepts and goals of the other participating disciplines, as well as of what they can contribute to the solutionofonesownproblems. Thisdoes,ofcourse,notmeanthatacomputer sc...
The two volume set LNCS 7491 and 7492 constitutes the refereed proceedings of the 12th International Conference on Parallel Problem Solving from Nature, PPSN 2012, held in Taormina, Sicily, Italy, in September 2012. The total of 105 revised full papers were carefully reviewed and selected from 226 submissions. The meeting began with 6 workshops which offered an ideal opportunity to explore specific topics in evolutionary computation, bio-inspired computing and metaheuristics. PPSN 2012 also included 8 tutorials. The papers are organized in topical sections on evolutionary computation; machine learning, classifier systems, image processing; experimental analysis, encoding, EDA, GP; multiobjective optimization; swarm intelligence, collective behavior, coevolution and robotics; memetic algorithms, hybridized techniques, meta and hyperheuristics; and applications.
This book constitutes the refereed proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, held in Guanajuato, Mexico, in March 2005. The 59 revised full papers presented together with 2 invited papers and the summary of a tutorial were carefully reviewed and selected from the 115 papers submitted. The papers are organized in topical sections on algorithm improvements, incorporation of preferences, performance analysis and comparison, uncertainty and noise, alternative methods, and applications in a broad variety of fields.
This book constitutes the refereed proceedings of the 17th Australian Conference on Artificial Intelligence, AI 2004, held in Cairns, Australia, in December 2004. The 78 revised full papers and 62 revised short papers presented were carefully reviewed and selected from 340 submissions. The papers are organized in topical sections on agents; biomedical applications; computer vision, image processing, and pattern recognition; ontologies, knowledge discovery and data mining; natural language and speech processing; problem solving and reasoning; robotics; and soft computing.
The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.