You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The importance of chloride ions in cell physiology has not been fully recognized until recently, in spite of the fact that chloride (Cl-), together with bicarbonate, is the most abundant free anion in animal cells, and performs or determines fundamental biological functions in all tissues. For many years it was thought that Cl- was distributed in thermodynamic equilibrium across the plasma membrane of most cells. Research carried out during the last couple of decades has led to a dramatic change in this simplistic view. We now know that most animal cells, neurons included, exhibit a non-equilibrium distribution of Cl- across their plasma membranes. Over the last 10 to 15 years, with the grow...
This book provides an overview on recent progress in anion channels and transporters. It covers multiple scales of analysis ranging from studying the molecular basis of function at atomic resolution to cellular consequences to channel/transporter dysfunction and approaches to correct such processes by pharmacological intervention. Similar anion channels and transporters are expressed in multiple tissues – often fulfilling similar cellular tasks, but also clearly distinct functions. The aim is to combine work on multiple cell and organ systems.
An enormous theoretical effort has been made to treat electron-phonon coupled systems, with particular emphasis on Many Body aspects for dense electron systems, taking into account continuum as well as lattice polaron effects. Treating such aspects of polaron theory has been made possible because of powerful Many Body techniques which include: Exact Diagonalization techniques, Quantum Monte Carlo approaches, Density Matrix renormalization group and Dynamical Mean Field Theory. All these advances in polaron theory needed to be accompanied by: (i) an equally important advance in material research which produced many new materials such as the high Tc cuprates, the manganites and nickelates and ...
Protein Targeting, Transport, and Translocation presents an in-depth overview on the topic of protein synthesis, covering all areas of protein science, including protein targeting, secretion, folding, assembly, structure, localization, quality control, degradation, and antigen presentation. Chapters also include sections on the history of the field as well as summary panels for quick reference. Numerous color illustrations complement the presentation of material. This book is an essential reference for anyone in biochemistry and protein science, as well as an excellent textbook for advanced students in these and related fields. - Basic principles and techniques - Targeting adn sorting sequences - Protein export in bacteria - Membrane protein integration into ER and bacterial membranes - Protein translocation across the ER - Disulfide bond formation in prokaryotes and eukaryotes - Quality control in the export pathway - Import of proteins into organelles - The secretory pathway - Vesicular transport - Spectacular color throughout
Friedrich Schor (1705-1773), son of Friedrich Schorr and Usula Tschudin, married Margaretha Schneider in 1729, and in 1750 the family immigrated from Switzerland to Philadelphia (Margaretha died at sea). Frederick Shore (as his name was anglicized) and his children settled on land in Augusta County, Virginia, moving later to Surry County, North Carolina. Descendants and relatives lived in Virginia, North Carolina, Missouri, Arkansas, Mississippi, Texas and elsewhere.
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, Raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, Raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
This book explores the synthesis, characterization, and applications of graphene and its derivatives. It covers advancements in improving graphene quality, surface engineering methods, and increasing material functionality. The topics covered include functionalized graphene, graphene quantum dots, novel device fabrication approaches, and diverse applications. The book also investigates the fundamental principles of characterizing graphene and its derivatives, along with electronic structures, theoretical investigations, and computational analyses relevant to their applications, synthesis, and properties. The chapters are organized to cover these topics, starting with a general overview of surface chemistry and its concepts for surface engineering of graphene, the fundamental properties of graphene and its derivatives, their synthesis, and applications in numerous fields, and concludes with a future perspective. Significantly, for the first time, both industrial and medical applications are gathered in one book, enabling us to discuss the confrontation of medical and industrial applications of graphene and graphene quantum dots.
Analytical Applications of Graphene Oxide, Volume 106 in the Comprehensive Analytical Chemistry series, presents timely topics in this area of study. Chapters in this new release include 2. Surface Modifications of Graphene Oxide Nanomaterials for Analytical Applications, Analytical techniques for the characterization of graphene oxide, Perspectives of graphene oxide in separation science, Features of graphene oxide-based membranes in water purification, Graphene oxide nanocomposites for the removal of inorganic species, Graphene oxide nanocomposites as promising adsorbents for removal of organic pollutants, Graphene oxide-based metal nanocomposites for colorimetric sensing applications, Gra...