You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Low-dimensional topology has long been a fertile area for the interaction of many different disciplines of mathematics, including differential geometry, hyperbolic geometry, combinatorics, representation theory, global analysis, classical mechanics, and theoretical physics. The Park City Mathematics Institute summer school in 2006 explored in depth the most exciting recent aspects of this interaction, aimed at a broad audience of both graduate students and researchers. The present volume is based on lectures presented at the summer school on low-dimensional topology. These notes give fresh, concise, and high-level introductions to these developments, often with new arguments not found elsewh...
This volume contains lectures from the Graduate Summer School “Quantum Field Theory and Manifold Invariants” held at Park City Mathematics Institute 2019. The lectures span topics in topology, global analysis, and physics, and they range from introductory to cutting edge. Topics treated include mathematical gauge theory (anti-self-dual equations, Seiberg-Witten equations, Higgs bundles), classical and categorified knot invariants (Khovanov homology, Heegaard Floer homology), instanton Floer homology, invertible topological field theory, BPS states and spectral networks. This collection presents a rich blend of geometry and topology, with some theoretical physics thrown in as well, and so provides a snapshot of a vibrant and fast-moving field. Graduate students with basic preparation in topology and geometry can use this volume to learn advanced background material before being brought to the frontiers of current developments. Seasoned researchers will also benefit from the systematic presentation of exciting new advances by leaders in their fields.
This book contains a collection of survey articles of exciting new developments in geometry, written in tribute to Simon Donaldson to celebrate his 60th birthday. Reflecting the wide range of Donaldson's interests and influence, the papers range from algebraic geometry and topology through symplectic geometry and geometric analysis to mathematical physics. Their expository nature means the book acts as an invitation to the various topics described, while also giving a sense of the links between these different areas and the unity of modern geometry.
This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from 'Stein to Weinstein') and its applications in the complex geometric world of Stein manifolds (the road 'back').
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy betw...
'The collection transcends the traditional institutional division lines (private, public, large, small, research, undergraduate, etc.) and has something to offer for readers in every realm of academia. The collection challenges the reader to think about how to implement and improve undergraduate research experiences, what such experiences mean to students and faculty, and how such experiences can take a permanent place in the modern preparation of undergraduate mathematics and STEM majors. The book is an open invitation to learn about what has worked and what hasn’t in the inspiration, and has the potential to ignite initiatives with long-lasting benefits to students and faculty nationwide...
"...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students."—The Journal of the American Statistical Association
This volume contains the proceedings of the summer school and research conference “Frontiers in Geometry and Topology”, celebrating the sixtieth birthday of Tomasz Mrowka, which was held from August 1–12, 2022, at the Abdus Salam International Centre for Theoretical Physics (ICTP). The summer school featured ten lecturers and the research conference featured twenty-three speakers covering a range of topics. A common thread, reflecting Mrowka's own work, was the rich interplay among the fields of analysis, geometry, and topology. Articles in this volume cover topics including knot theory; the topology of three and four-dimensional manifolds; instanton, monopole, and Heegaard Floer homologies; Khovanov homology; and pseudoholomorphic curve theory.
This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers. The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects. It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry.