You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This thesis presents a new method for following evolving interactions between coupled oscillatory systems of the kind that abound in nature. Examples range from the subcellular level, to ecosystems, through climate dynamics, to the movements of planets and stars. Such systems mutually interact, adjusting their internal clocks, and may correspondingly move between synchronized and non-synchronized states. The thesis describes a way of using Bayesian inference to exploit the presence of random fluctuations, thus analyzing these processes in unprecedented detail. It first develops the basic theory of interacting oscillators whose frequencies are non-constant, and then applies it to the human heart and lungs as an example. Their coupling function can be used to follow with great precision the transitions into and out of synchronization. The method described has the potential to illuminate the ageing process as well as to improve diagnostics in cardiology, anesthesiology and neuroscience, and yields insights into a wide diversity of natural processes.
Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.
This book, based on a selection of invited presentations from a topical workshop, focusses on time-variable oscillations and their interactions. The problem is challenging, because the origin of the time variability is usually unknown. In mathematical terms, the oscillations are non-autonomous, reflecting the physics of open systems where the function of each oscillator is affected by its environment. Time-frequency analysis being essential, recent advances in this area, including wavelet phase coherence analysis and nonlinear mode decomposition, are discussed. Some applications to biology and physiology are described. Although the most important manifestation of time-variable oscillations is arguably in biology, they also crop up in, e.g. astrophysics, or for electrons on superfluid helium. The book brings together the research of the best international experts in seemingly very different disciplinary areas.
This book constitutes the proceedings of the First International Conference on Future Access Enablers for Ubiquitous and Intelligent Infrastructures, FABULOUS 2015, held in Ohrid, Republic of Macedonia, in September 2015. The 39 revised papers cover the broad areas of future wireless networks, ambient and assisted living, smart infrastructures and security and reflect the fast developing and vibrant penetration of IoT technologies in diverse areas of human live.
This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. Mat Lab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications.
This book, dedicated to Professor Georgi M. Dimirovski on his anniversary, contains new research directions, challenges, and many relevant applications related to many aspects within the broadly perceived areas of systems and control, including signal analysis and intelligent systems. The project comprises two volumes with papers written by well known and very active researchers and practitioners. The first volume is focused on more foundational aspects related to general issues in systems science and mathematical systems, various problems in control and automation, and the use of computational and artificial intelligence in the context of systems modeling and control. The second volume is concerned with a presentation of relevant applications, notably in robotics, computer networks, telecommunication, fault detection/diagnosis, as well as in biology and medicine, and economic, financial, and social systems too.
This special issue reviews state-of-the-art approaches to the biophysical roots of cognition. These approaches appeal to the notion that cognitive capacities serve to optimize responses to changing external conditions. Crucially, this optimisation rests on the ability to predict changes in the environment, thus allowing organisms to respond pre-emptively to changes before their onset. The biophysical mechanisms that underwrite these cognitive capacities remain largely unknown; although a number of hypotheses has been advanced in systems neuroscience, biophysics and other disciplines. These hypotheses converge on the intersection of thermodynamic and information-theoretic formulations of self...
None