You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 10th International Conference on Parallel Problem Solving from Nature, PPSN 2008, held in Dortmund, Germany, in September 2008. The 114 revised full papers presented were carefully reviewed and selected from 206 submissions. The conference covers a wide range of topics, such as evolutionary computation, quantum computation, molecular computation, neural computation, artificial life, swarm intelligence, artificial ant systems, artificial immune systems, self-organizing systems, emergent behaviors, and applications to real-world problems. The paper are organized in topical sections on formal theory, new techniques, experimental analysis, multiobjective optimization, hybrid methods, and applications.
This book constitutes the refereed proceedings of the 15th International Conference on Computational Methods in Systems Biology, CMSB 2017, held in Darmstadt, Germany, in September 2017. The 15 full papers, 4 tool papers and 4 posters presented together with 1 invited talk were carefully reviewed and selected from 41 regular paper submissions. Topics of interest include formalisms for modeling biological processes; models and their biological applications; frameworks for model verication, validation, analysis, and simulation of biological systems; high-performance computational systems biology and parallel implementations; model inference from experimental data; model integration from biological databases; multi-scale modeling and analysis methods; and computational approaches for synthetic biology.
Biological sensory systems, fine-tuned to their specific tasks with remarkable perfection, have an enormous potential for technical, industrial, and medical applications. This applies to sensors specialized for a wide range of energy forms such as optical, mechanical, electrical, and magnetic, to name just a few. This book brings together first-hand knowledge from the frontiers of different fields of research in sensing. It aims to promote the interaction between biologists, engineers, physicists, and mathematicians and to pave the way for innovative lines of research and cross-disciplinary approaches. The topics presented cover a broad spectrum ranging from energy transformation and transduction processes in animal sensing systems to the fabrication and application of bio-inspired synthetic sensor arrays. The various contributions are linked by the similarity of what sensing has to accomplish in both biology and engineering.
This book constitutes the refereed proceedings of the 17th International Conference on Computational Methods in Systems Biology, CMSB 2019, held in Trieste, Italy, in September 2019. The 14 full papers, 7 tool papers and 11 posters were carefully reviewed and selected from 53 submissions. Topics of interest include formalisms for modeling biological processes; models and their biological applications; frameworks for model verification, validation, analysis, and simulation of biological systems; high-performance computational systems biology and parallel implementations; model inference from experimental data; model integration from biological databases; multi-scale modeling and analysis methods; computational approaches for synthetic biology; and case studies in systems and synthetic biology.
Mathematical models have become invaluable tools for understanding the intricate dynamic behavior of complex biochemical and biological systems. Among computational strategies, logical modeling has been recently gaining interest as an alternative approach to address network dynamics. Due to its advantages, including scalability and independence of kinetic parameters, the logical modeling framework is becoming increasingly popular to study the dynamics of highly interconnected systems, such as cell cycle progression, T cell differentiation and gene regulation. Novel tools and standards have been developed to increase the interoperability of logical models, which can now be employ to respond a variety of biological questions. This Research Topic brings together the most recent and cutting-edge approaches in the area of logical modeling including, among others, novel biological applications, software development and model analysis techniques.
This book presents the proceedings from the International Conference held in Halifax, NS in July 1997. Funded by The Fields Institute and Le Centre de Recherches Mathématiques, the conference was held in honor of the retirement of Professors Lynn Erbe and Herb I. Freedman (University of Alberta). Featured topics include ordinary, partial, functional, and stochastic differential equations and their applications to biology, epidemiology, neurobiology, physiology and other related areas. The 41 papers included in this volume represent the recent work of leading researchers over a wide range of subjects, including bifurcation theory, chaos, stability theory, boundary value problems, persistence theory, neural networks, disease transmission, population dynamics, pattern formation and more. The text would be suitable for a graduate or advanced undergraduate course study in mathematical biology. Features: An overview of current developments in differential equations and mathematical biology. Authoritative contributions from over 60 leading worldwide researchers. Original, refereed contributions.
This book presents outstanding contributions in an exciting, new and multidisciplinary research area: the application of formal, automated reasoning techniques to analyse complex models in systems biology and systems medicine. Automated reasoning is a field of computer science devoted to the development of algorithms that yield trustworthy answers, providing a basis of sound logical reasoning. For example, in the semiconductor industry formal verification is instrumental to ensuring that chip designs are free of defects (or “bugs”). Over the past 15 years, systems biology and systems medicine have been introduced in an attempt to understand the enormous complexity of life from a computat...
The two volume set LNCS 5506 and LNCS 5507 constitutes the thoroughly refereed post-conference proceedings of the 15th International Conference on Neural Information Processing, ICONIP 2008, held in Auckland, New Zealand, in November 2008. The 260 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. 116 papers are published in the first volume and 112 in the second volume. The contributions deal with topics in the areas of data mining methods for cybersecurity, computational models and their applications to machine learning and pattern recognition, lifelong incremental learning for intelligent systems, application of intelligent methods in ecological informatics, pattern recognition from real-world information by svm and other sophisticated techniques, dynamics of neural networks, recent advances in brain-inspired technologies for robotics, neural information processing in cooperative multi-robot systems.
The four-volume set LNCS 2657, LNCS 2658, LNCS 2659, and LNCS 2660 constitutes the refereed proceedings of the Third International Conference on Computational Science, ICCS 2003, held concurrently in Melbourne, Australia and in St. Petersburg, Russia in June 2003. The four volumes present more than 460 reviewed contributed and invited papers and span the whole range of computational science, from foundational issues in computer science and algorithmic mathematics to advanced applications in virtually all application fields making use of computational techniques. These proceedings give a unique account of recent results in the field.
The second of a two-volume set, this book constitutes the refereed proceedings of the Second International Work-Conference on the Interplay between Natural and Artificial Computation, IWINAC 2007, held in La Manga del Mar Menor, Spain in June 2007. It contains all the contributions connected with biologically inspired methods and techniques for solving AI and knowledge engineering problems in different application domains.