You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents leading-edge research in physics from researchers around the world.
Horizons in World Physics, Volume 247 - New Developments in Quantum Cosmology Research
Quantum Gravity Research Trends
A quantum dot is a particle of matter so small that the addition or removal of an electron changes its properties in some useful way. All atoms are quantum dots, but multi-molecular combinations can have this characteristic. In biochemistry, quantum dots are called redox groups. In nanotechnology, they are called quantum bits or qubits. Quantum dots typically have dimensions measured in nanometers, where one nanometer is 10-9 meter or a millionth of a millimetre. The fields of biology, chemistry, computer science, and electronics are all of interest to researchers in nanotechnology. Other applications of quantum dots include nanomachines, neural networks, and high-density memory or storage media. Research is being carried out on nano-crystals, self-assembled dots, and gated structures. This book presents leading-edge research from around the world.
General Relativity Research Trends
Although the various branches of physics differ in their experimental methods and theoretical approaches, certain general principles apply to all of them. The forefront of contemporary advances in physics lies in the submicroscopic regime, whether it be in atomic, nuclear, condensed-matter, plasma, or particle physics, or in quantum optics, or even in the study of stellar structure. All are based upon quantum theory (i.e: quantum mechanics and quantum field theory) and relativity, which together form the theoretical foundations of modern physics. Many physical quantities whose classical counterparts vary continuously over a range of possible values are in quantum theory constrained to have d...
This book presents the latest research in two leading areas of physics - astrophysics and condensed matter.
This book is devoted to the non-linear theory of the collective interaction between a modulated beam of relativistic charged particles and narrow electromagnetic and Langmuir wave packets in plasma or gas slow-wave systems. Regular oscillations excited by a relativistic beam under the conditions of Cherenkov resonance and the anomalous Doppler effect can be used to generate coherent microwave radiation and accelerate charged particles in plasma.
This is a first textbook that is entirely focused on the up-to-date developments of null curves with their applications to science and engineering. It fills an important gap in a second-level course in differential geometry, as well as being essential for a core undergraduate course on Riemannian curves and surfaces. The sequence of chapters is arranged to provide in-depth understanding of a chapter and stimulate further interest in the next. The book comprises a large variety of solved examples and rigorous exercises that range from elementary to higher levels. This unique volume is self-contained and unified in presenting: