You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A textbook designed for senior undergraduate and graduate level classroom courses on system identification. Examples and problems. Annotation copyrighted by Book News, Inc., Portland, OR
Presenting statistical and stochastic methods for the analysis and design of technological systems in engineering and applied areas, this work documents developments in statistical modelling, identification, estimation and signal processing. The book covers such topics as subspace methods, stochastic realization, state space modelling, and identification and parameter estimation.
This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, i...
This book is dedicated to Prof. Peter Young on his 70th birthday. Professor Young has been a pioneer in systems and control, and over the past 45 years he has influenced many developments in this field. This volume comprises a collection of contributions by leading experts in system identification, time-series analysis, environmetric modelling and control system design – modern research in topics that reflect important areas of interest in Professor Young’s research career. Recent theoretical developments in and relevant applications of these areas are explored treating the various subjects broadly and in depth. The authoritative and up-to-date research presented here will be of interest to academic researcher in control and disciplines related to environmental research, particularly those to with water systems. The tutorial style in which many of the contributions are composed also makes the book suitable as a source of study material for graduate students in those areas.
This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.
This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.
This is a revised version of the 1984 book of the same name but considerably modified and enlarged to accommodate the developments in recursive estimation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox for recursive estimation and time series analysis has been developed at Lancaster, for use in the MatlabTM software environment (see Appendix G). Consequently, the present version of the book is able to exploit the many computational routines that are contained in this widely available Toolbox, as well as some of the other routines in MatlabTM and its other toolboxes. The book is an introductory one on the topic of recursive estimation and it demonstrates how this approach to estimation, in its various forms, can be an impressive aid to the modelling of stochastic, dynamic systems. It is intended for undergraduate or Masters students who wish to obtain a grounding in this subject; or for practitioners in industry who may have heard of topics dealt with in this book and, while they want to know more about them, may have been deterred by the rather esoteric nature of some books in this challenging area of study.