You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The present volume is an updated version of the book edited by C N Yang and M L Ge on the topics of braid groups and knot theory, which are related to statistical mechanics. This book is based on the 1989 volume but has new material included and new contributors.
Tutorial on the braid groups / Dale Rolfsen -- Simplicial objects and homotopy groups / Jie Wu -- Introduction to configuration spaces and their applications / Frederick R. Cohen -- Configuration spaces, braids, and robotics / Robert Ghrist -- Braids and magnetic fields / Mitchell A. Berger -- Braid group cryptography / David Garber
This volume contains a state-of-the-art discussion of recent progress in a range of related topics in symplectic geometry and mathematical physics, including symplectic groupoids, geometric quantization, noncommutative differential geometry, equivariant cohomology, deformation quantization, topological quantum field theory, and knot invariants.
This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.
This volume comprises the Lecture Notes of the CIMPA/TUBITAK Summer School Arrangements, Local systems and Singularities held at Galatasaray University, Istanbul during June 2007. The volume is intended for a large audience in pure mathematics, including researchers and graduate students working in algebraic geometry, singularity theory, topology and related fields. The reader will find a variety of open problems involving arrangements, local systems and singularities proposed by the lecturers at the end of the school.
This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
Contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Artin's Braid Group, held at the University of California, Santa Cruz, in July 1986. This work is suitable for graduate students and researchers who wish to learn more about braids, as well as more experienced workers in this area.
Contents:Notes on Subfactors and Statistical Mechanics (V F R Jones)Polynomial Invariants in Knot Theory (L H Kauffman)Algebras of Loops on Surfaces, Algebras of Knots, and Quantization (V G Turaev)Quantum Groups (L Faddeev et al.)Introduction to the Yang-Baxter Equation (M Jimbo)Integrable Systems Related to Braid Groups and Yang-Baxter Equation (T Kohno)The Yang-Baxter Relation: A New Tool for Knot Theory (Y Akutsu et al.)Akutsu-Wadati Link Polynomials from Feynman-Kauffman Diagrams (M-L Ge et al.)Quantum Field Theory and the Jones Polynomial (E Witten) Readership: Mathematical physicists.
Covers the proceedings of the Institute for Mathematics and its Applications Participating Institutions Conference on Singularities, held at the University of Iowa in July 1986. Suitable for researchers in various aspects of singularity theory, this work provides an overview of the state of singularity theory and details work in several subareas.
This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis...