You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Volume 43 of Advances in Solid State Physics contains the written versions of most of the plenary and invited lectures of the Spring Meeting of the Condensed Matter Physics section of the Deutsche Physikalische Gesellschaft held from March 24 to 28, 2003 in Dresden, Germany. Many of the topical talks given at the numerous and very lively symposia are also included. They covered an extremely interesting selection of timely subjects. Thus the book truly reflects the status of the field of solid state physics in 2003, and explains its attractiveness, not only in Germany but also internationally.
This book provides a comprehensive overview of the computational physics for nanoscience and nanotechnology. Based on MATLAB and the C++ distributed computing paradigm, the book gives instructive explanations of the underlying physics for mesoscopic systems with many listed programs that readily compute physical properties into nanoscales. Many generated graphical pictures demonstrate not only the principles of physics, but also the methodology of computing.
A detailed introduction to interdisciplinary application area of distributed systems, namely the computer support of individuals trying to solve a problem in cooperation with each other but not necessarily having identical work places or working times. The book is addressed to students of distributed systems, communications, information science and socio-organizational theory, as well as to users and developers of systems with group communication and cooperation as top priorities.
This book includes new and important research on antioxidants for chemistry and biology, kinetics and mechanisms of molecular, radical and ion reactions in chemistry and biochemistry, chemistry of ozone (reactions of ozone with organic and inorganic compounds, action of antiozonants), application of electron magnetic resonance and nuclear magnetic resonance in chemistry and biology, investigations of the structure and properties of nanocomposites (nanotubes, particularly), investigations on the structure and properties of nanocomposites (nanotubes, particularly), investigations of heterogeneous-heterophases mechanisms of reaction in polymer matrix, preparation and using of organic papanagnets for investigation of radical reactions in chemistry and biology, investigation of kinetic parameters in biochemical reactions, new designs for processing, mechanisms of oxidation and stabilisation of organic compounds (including polymers), polymer blends, composites and filled polymers (preparation, properties and application), and information about genetic construction, reactions with participants of enzymes.
This volume is a tribute to the career of Prof. Mildred Dresselhaus. It focuses on the optical properties and spectroscopy of single-wall carbon nanotubes. It contains chapters on diverse experimental and theoretical aspects of the field, written by internationally recognized experts. The volume serves as an important resource for researchers and students interested in carbon nanotubes.
This book provides a state of the art report of the knowledge accumulated in graphene research. The fascination with graphene has been growing very rapidly in recent years and the physics of graphene is now becoming one of the most interesting as well as the most fast-moving topics in condensed-matter physics. The Nobel prize in physics awarded in 2010 has given a tremendous impetus to this topic. The horizon of the physics of graphene is ever becoming wider, where physical concepts go hand in hand with advances in experimental techniques. Thus this book is expanding the interests to not only transport but optical and other properties for systems that include multilayer as well as monolayer graphene systems. The book comprises experimental and theoretical knowledge. The book is also accessible to graduate students.
The book describes the state-of-the-art in fundamental, applied and device physics of nanotubes, including fabrication, manipulation and characterization for device applications; optics of nanotubes; transport and electromechanical devices and fundamentals of theory for applications. This information is critical to the field of nanoscience since nanotubes have the potential to become a very significant electronic material for decades to come. The book will benefit all all readers interested in the application of nanotubes, either in their theoretical foundations or in newly developed characterization tools that may enable practical device fabrication.
Building on the success of its predecessor, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, this second volume focuses on those areas that have grown rapidly in the past few years. Contributing authors reflect the multidisciplinary nature of the book and are all leaders in their particular areas of research. Among the many topics they cover are graphene and other carbon-like and tube-like materials, which are likely to affect and influence developments in nanotubes within the next five years. Extensive use of illustrations enables you to better understand and visualize key concepts and processes.
Beginning with an introduction to carbon-based nanomaterials, their electronic properties, and general concepts in quantum transport, this detailed primer describes the most effective theoretical and computational methods and tools for simulating the electronic structure and transport properties of graphene-based systems. Transport concepts are clearly presented through simple models, enabling comparison with analytical treatments, and multiscale quantum transport methodologies are introduced and developed in a straightforward way, demonstrating a range of methods for tackling the modelling of defects and impurities in more complex graphene-based materials. The authors also discuss the practical applications of this revolutionary nanomaterial, contemporary challenges in theory and simulation, and long-term perspectives. Containing numerous problems for solution, real-life examples of current research, and accompanied online by further exercises, solutions and computational codes, this is the perfect introductory resource for graduate students and researchers in nanoscience and nanotechnology, condensed matter physics, materials science and nanoelectronics.