You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the religious landscape of early medieval (c. AD 600-1200) Bihar and Bengal, poly-religiosity was generally the norm than an exception, which entailed the evolution of complex patterns of inter-religious equations. Buddhism, Brahmanism and Jainism not only coexisted but also competed for social patronage, forcing them to enter into complex interactions with social institutions and processes. Through an analysis of the published archaeological data, this work explores some aspects of the social history of Buddhist, Brahmanical and Jaina temples and shrines, and Buddhist stūpas and monasteries in early medieval Bihar and Bengal. This archaeological history of religions questions many ‘established’ textual reconstructions, and enriches our understanding of the complex issue of the decline of Buddhism in this area. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Landscape Fire, Smoke, and Health Linking Biomass Burning Emissions to Human Well-Being Where and when wildfires occur, what pollutants they emit, how the chemistry of smoke changes in the atmosphere, and what impact this air pollution has on human health and well-being are questions explored across different scientific disciplines. Landscape Fire, Smoke, and Health: Linking Biomass Burning Emissions to Human Well-Being is designed to create a foundational knowledge base allowing interdisciplinary teams to interact more effectively in addressing the impacts of air pollution from biomass burning on human health. Volume highlights include: Core concepts, principles, and terminology related to ...
An interdisciplinary study of the Kuroshio nutrient stream The surface water of the Kuroshio, a western boundary current in the North Pacific Ocean, is nutrient-depleted and has relatively low primary productivity, yet abundant fish populations are supported in the region. This is called the “Kuroshio Paradox”. Kuroshio Current: Physical, Biogeochemical and Ecosystem Dynamics presents research from a multidisciplinary team that conducted observational and modeling studies to investigate this contradiction. This timely and important contribution to the ocean sciences literature provides a comprehensive analysis of the Kuroshio. Volume highlights include: New insights into the role of the Kuroshio as a nutrient stream The first interdisciplinary examination of the Kuroshio Paradox Reflections on the influence of the Kuroshio on Japanese culture Research results on both the lower and higher trophic levels in the Kuroshio ecosystem Comparisons of nutrient dynamics in the Kuroshio and Gulf Stream Predictions of ecosystem responses to future climate variability
A rigorous mathematical problem-solving framework for analyzing the Earth’s energy resources GeoEnergy encompasses the range of energy technologies and sources that interact with the geological subsurface. Fossil fuel availability studies have historically lacked concise modeling, tending instead toward heuristics and overly-complex processes. Mathematical GeoEnergy: Oil Discovery, Depletion and Renewal details leading-edge research based on a mathematically-oriented approach to geoenergy analysis. Volume highlights include: Applies a formal mathematical framework to oil discovery, depletion, and analysis Employs first-order applied physics modeling, decreasing computational resource requi...
A multidisciplinary update on continental plate tectonics and plate boundary discontinuities Understanding the origin and evolution of the continental crust continues to challenge Earth scientists. Lithospheric Discontinuities offers a multidisciplinary review of fine scale layering within the continental lithosphere to aid the interpretation of geologic layers. Once Earth scientists can accurately decipher the history, internal dynamics, and evolution of the continental lithosphere, we will have a clearer understanding of how the crust formed, how plate tectonics began, and how our continents became habitable. Volume highlights: Theories and observations of the current state of tectonic bou...
Improving weather and climate prediction with better representation of fast processes in atmospheric models Many atmospheric processes that influence Earth’s weather and climate occur at spatiotemporal scales that are too small to be resolved in large scale models. They must be parameterized, which means approximately representing them by variables that can be resolved by model grids. Fast Processes in Large Scale Atmospheric Models: Progress, Challenges and Opportunities explores ways to better investigate and represent multiple parameterized processes in models and thus improve their ability to make accurate climate and weather predictions. Volume highlights include: Historical developme...
Advances in theories, methods and applications for shale resource use Shale is the dominant rock in the sedimentary record. It is also the subject of increased interest because of the growing contribution of shale oil and gas to energy supplies, as well as the potential use of shale formations for carbon dioxide sequestration and nuclear waste storage. Shale: Subsurface Science and Engineering brings together geoscience and engineering to present the latest models, methods and applications for understanding and exploiting shale formations. Volume highlights include: Review of current knowledge on shale geology Latest shale engineering methods such as horizontal drilling Reservoir management ...
Methods and techniques for monitoring subsurface carbon dioxide storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
A comprehensive handbook on state-of-the-art DAS technology and applications Distributed Acoustic Sensing (DAS) is a technology that records sound and vibration signals along a fiber optic cable. Its advantages of high resolution, continuous, and real-time measurements mean that DAS systems have been rapidly adopted for a range of applications, including hazard mitigation, energy industries, geohydrology, environmental monitoring, and civil engineering. Distributed Acoustic Sensing in Geophysics: Methods and Applications presents experiences from both industry and academia on using DAS in a range of geophysical applications. Volume highlights include: DAS concepts, principles, and measurements Comprehensive review of the historical development of DAS and related technologies DAS applications in hydrocarbon, geothermal, and mining industries DAS applications in seismology DAS applications in environmental and shallow geophysics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
New scientific discoveries in the Congo Basin as a result of international collaborations The Congo is the world's second largest river basin and home to 120 million people. Understanding the cycling of water, sediments, and nutrients is important as the region faces climatic and anthropogenic change. Congo Basin Hydrology, Climate, and Biogeochemistry: A Foundation for the Future explores variations in and influences on rainfall, hydrology and hydraulics, and sediment and carbon dynamics. It features contributions from experts in the region and their international collaborators. Volume highlights include: New in-situ and remotely sensed measurements and model results Use of historic data to...