You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R.
RDBMS (Relational Database Management System) data is structured in database tables, fields and records. It's a great if we can combine R and RDMS as data storage. This book helps you how to get started with Database programming using R. It uses MySQL, SQL Server and Oracle for database illustration. The following is highlight topics of the book: * Preparing Development Environment * R Configuration for Database Server * Database Table Operations (CRUD - Create, Read, Update, and Delete) * Stored Procedures * Working with Image and Binary Data * Transactions
This book presents the R software environment as a key tool for oceanographic computations and provides a rationale for using R over the more widely-used tools of the field such as MATLAB. Kelley provides a general introduction to R before introducing the ‘oce’ package. This package greatly simplifies oceanographic analysis by handling the details of discipline-specific file formats, calculations, and plots. Designed for real-world application and developed with open-source protocols, oce supports a broad range of practical work. Generic functions take care of general operations such as subsetting and plotting data, while specialized functions address more specific tasks such as tidal de...
This book offers a snapshot of the state-of-the-art in classification at the interface between statistics, computer science and application fields. The contributions span a broad spectrum, from theoretical developments to practical applications; they all share a strong computational component. The topics addressed are from the following fields: Statistics and Data Analysis; Machine Learning and Knowledge Discovery; Data Analysis in Marketing; Data Analysis in Finance and Economics; Data Analysis in Medicine and the Life Sciences; Data Analysis in the Social, Behavioural, and Health Care Sciences; Data Analysis in Interdisciplinary Domains; Classification and Subject Indexing in Library and Information Science. The book presents selected papers from the Second European Conference on Data Analysis, held at Jacobs University Bremen in July 2014. This conference unites diverse researchers in the pursuit of a common topic, creating truly unique synergies in the process.
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis...
This collection of 13 selected papers originates from the International Seminar on Local Pattern Detection, held in Dagstuhl Castle, Germany in April 2004. This state-of-the-art survey on the emerging field Local Pattern Detection addresses four main topics. Three papers cover frequent set mining, four cover subgroup discovery, three cover the statistical view, and three papers are devoted to time phenomena.
The volume presents new developments in data analysis and classification and gives an overview of the state of the art in these scientific fields and relevant applications. Areas that receive considerable attention in the book are clustering, discrimination, data analysis, and statistics, as well as applications in economics, biology, and medicine it provides recent technical and methodological developments and a large number of application papers demonstrating the usefulness of the newly developed techniques.
Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data ...