You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Divided into two parts, the first four chapters of Comets and their Origin refer to comets and their formation in general, describing cometary missions, comet remote observations, astrochemistry, artificial comets, and the chirality phenomenon. The second part covers the cometary ROSETTA mission, its launch, journey, scientific objectives, and instrumentations, as well as the landing scenario on a cometary nucleus. Along the way, the author presents general questions concerning the origin of terrestrial water and the molecular beginnings of life on Earth, as well as how the instruments used on a space mission like ROSETTA can help answer them. The text concludes with a chapter on what scientists expect from the ROSETTA mission and how its data will influence our life on Earth. As a result, the author elucidates highly topical and fascinating knowledge to scientists and students of various scientific backgrounds, allowing them to work with ROSETTA's data.
"How did life originate and why were left-handed molecules selected for its architecture?" This question of high public and interdisciplinary scientific interest is the central theme of this book. It is widely known that in processes triggering the origin of life on Earth, the equal occurrence, the parity between left-handed amino acids and their right-handed mirror images, was violated. The balance was inevitably tipped to the left – as a result of which life's proteins today exclusively implement the left form of amino acids. Written in an engaging style, this book describes how the basic building blocks of life, the amino acids, formed. After a comprehensible introduction to stereochemi...
Early History of the Recognition of Molecular Biochirality, by Joseph Gal, Pedro Cintas Synthesis and Chirality of Amino Acids Under Interstellar Conditions, by Chaitanya Giri, Fred Goesmann, Cornelia Meinert, Amanda C. Evans, Uwe J. Meierhenrich Chemical and Physical Models for the Emergence of Biological Homochirality, by son E. Hein, Dragos Gherase, Donna G. Blackmond Biomolecules at Interfaces: Chiral, Naturally, by Arántzazu González-Campo and David B. Amabilino Stochastic Mirror Symmetry Breaking: Theoretical Models and Simulation of Experiments, by Celia Blanco, David Hochberg Self-Assembly of Dendritic Dipeptides as a Model of Chiral Selection in Primitive Biological Systems, by Brad M. Rosen, Cécile Roche, Virgil Percec Chirality and Protein Biosynthesis, by Sindrila Dutta Banik, Nilashis Nandi
Astrobiology is a remarkably interdisciplinary field. This reference serves as a key to understanding technical terms from the different subfields of astrobiology, including astronomy, biology, chemistry, the geosciences and the space sciences.
The authors look to the laws of thermodynamics for answers to the questions of evolution, ecology, economics, and even life's origin.
The year 2003 was the 50th anniversary of the seminal experiment of Stanley Miller. This was a unique opportunity for highlighting the current interest in this most interdisciplinary subject. The leading space agencies: the European Space Agency (ESA) as well as NASA, the American Space Agency, have planned missions that will elucidate some of the still unknown questions underlying research in the origin of life. New results are surpassing our ability to keep well informed: the reviews that we were presented at the Trieste meeting will bring the readers of this well-documented and timely book up to date in this fast-moving area. An important component of the conference was the review of the ...
Origin of Life studies have a nearly-impossible goal: understanding nature through the comprehension of its origins and its complexities. As a growing field with poorly-defined borders, Origin of Life studies profit from progress in other disciplines. This book proposes both an overview of this large area and an in-depth look at the opinions and results obtained by some of the active contributors of this fascinating and deeply thought-provoking matter. The topics are presented in a bottom-up order, first touching on the habitability of the universe, then the rationale behind meaningful prebiotic chemistry, the possible or probable prebiotic chemical frames, the problem of chirality, and moving on through the role of minerals in biogenesis, biogenic fertile environments, the in-and-out problem as solved by vesicles physics, the evolution of the codes, the structure of LUCA and its proto metabolisms and the meaning of complex extant biological biomorphs, as exemplified by viroids. These topics and the reasoning within the chapters are provided against the backdrop of the evolution of information and complexity.
This book looks at the persistence of life and how difficult it would be to annihilate life, especially a species as successful as humanity. The idea that life in general is fragile is challenged by the hardiness of microbes, which shows that astrobiology on exoplanets and other satellites must be robust and plentiful. Microbes have adapted to virtually every niche on the planet, from the deep, hot biosphere, to the frigid heights of the upper troposphere. Life, it seems, is almost indestructible. The chapters in this work examine the various scenarios that might lead to the extermination of life, and why they will almost always fail. Life's highly adaptive nature ensures that it will cling on no matter how difficult the circumstances. Scientists are increasingly probing and questioning life's true limits in, on and above the Earth, and how these limits could be pushed elsewhere in the universe. This investigation puts life in its true astronomical context, with the reader taken on a journey to illustrate life's potential and perseverance.
Chiral Derivatizing Agents, Macrocycles, Metal Complexes and Liquid Crystals for Enantiomer Differentiation in NMR Spectroscopy: Thomas J. Wenzel. Chiral NMR Solvating Additives for Differentiation of Enantiomers: Gloria Uccello-Barretta and Federica Balzano. Chiral Sensor Devices for Differentiation of Enantiomers: Kyriaki Manoli, Maria Magliulo and Luisa Torsi. Enantiopure supramolecular cages: synthesis and chiral recognition properties: Thierry Brotin, Laure Guy, Alexandre Martinez, Jean-Pierre Dutasta. Interconversion of Stereochemically Labile Enantiomers (Enantiomerization) : Oliver Trapp. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks: A.C. Evans, C. Meinert, J.H. Bredehöft, C. Giri, N.C. Jones, S.V. Hoffmann, U.J. Meierhenrich. Self-disproportionation of Enantiomers of Enantiomerically Enriched Compounds: Alexander E. Sorochinsky and Vadim A. Soloshonok.
Horses were first domesticated about 6,000 years ago on the vast Eurasian steppe, yet only in the last two decades have scientists begun to explore the mental capacities of these animals. In The Mind of the Horse, Michel-Antoine Leblanc presents an encyclopedic synthesis of scientific knowledge about equine behavior and cognition, providing experts and enthusiasts alike with an up-to-date understanding of how horses perceive, think about, and adapt to their physical and social worlds. Much of what we think we know about "the intelligence of the horse" derives from fragmentary reports and anecdotal evidence. Putting this accumulated wisdom to the test, Leblanc introduces readers to rigorous e...