Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Introduction to Probability Simulation and Gibbs Sampling with R
  • Language: en
  • Pages: 318

Introduction to Probability Simulation and Gibbs Sampling with R

The first seven chapters use R for probability simulation and computation, including random number generation, numerical and Monte Carlo integration, and finding limiting distributions of Markov Chains with both discrete and continuous states. Applications include coverage probabilities of binomial confidence intervals, estimation of disease prevalence from screening tests, parallel redundancy for improved reliability of systems, and various kinds of genetic modeling. These initial chapters can be used for a non-Bayesian course in the simulation of applied probability models and Markov Chains. Chapters 8 through 10 give a brief introduction to Bayesian estimation and illustrate the use of Gi...

Data Analysis Using Regression and Multilevel/Hierarchical Models
  • Language: en
  • Pages: 654

Data Analysis Using Regression and Multilevel/Hierarchical Models

This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.

Bayesian Statistical Methods
  • Language: en
  • Pages: 259

Bayesian Statistical Methods

  • Type: Book
  • -
  • Published: 2019-04-12
  • -
  • Publisher: CRC Press

Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to prior...

Cure Models
  • Language: en
  • Pages: 268

Cure Models

  • Type: Book
  • -
  • Published: 2021-03-22
  • -
  • Publisher: CRC Press

Cure Models: Methods, Applications and Implementation is the first book in the last 25 years that provides a comprehensive and systematic introduction to the basics of modern cure models, including estimation, inference, and software. This book is useful for statistical researchers and graduate students, and practitioners in other disciplines to have a thorough review of modern cure model methodology and to seek appropriate cure models in applications. The prerequisites of this book include some basic knowledge of statistical modeling, survival models, and R and SAS for data analysis. The book features real-world examples from clinical trials and population-based studies and a detailed intro...

Bayesian Analysis for the Social Sciences
  • Language: en
  • Pages: 598

Bayesian Analysis for the Social Sciences

Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.

Programmieren mit R
  • Language: de
  • Pages: 245

Programmieren mit R

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.

Adreßbuch der Stadt Ellwangen (Jagst)
  • Language: de
  • Pages: 360

Adreßbuch der Stadt Ellwangen (Jagst)

  • Type: Book
  • -
  • Published: 1987
  • -
  • Publisher: Unknown

None

Second-generation Holocaust Literature
  • Language: en
  • Pages: 276

Second-generation Holocaust Literature

Expands the definition of second-generation literature to include texts written from the point of view of the children of Nazi perpetrators.

Universal Commercial Correspondence in Six Languages: English, German, French, Dutch, Italian, and Spanish
  • Language: en
  • Pages: 669

Universal Commercial Correspondence in Six Languages: English, German, French, Dutch, Italian, and Spanish

Reprint of the original, first published in 1865. Containing General Correspondence.

Foundations of Statistical Algorithms
  • Language: en
  • Pages: 495

Foundations of Statistical Algorithms

  • Type: Book
  • -
  • Published: 2013-12-09
  • -
  • Publisher: CRC Press

A new and refreshingly different approach to presenting the foundations of statistical algorithms, Foundations of Statistical Algorithms: With References to R Packages reviews the historical development of basic algorithms to illuminate the evolution of today’s more powerful statistical algorithms. It emphasizes recurring themes in all statistical algorithms, including computation, assessment and verification, iteration, intuition, randomness, repetition and parallelization, and scalability. Unique in scope, the book reviews the upcoming challenge of scaling many of the established techniques to very large data sets and delves into systematic verification by demonstrating how to derive gen...