You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An understanding of quantum mechanics is vital to all students of physics, chemistry and electrical engineering, but requires a lot of mathematical concepts, the details of which are given with great clarity in this book. Various concepts have been derived from first principles, so it can also be used for self-study. The chapters on the JWKB approximation, time-independent perturbation theory and effects of magnetic field stand out for their clarity and easy-to-understand mathematics. Two complete chapters on the linear harmonic oscillator provide a very detailed discussion of one of the most fundamental problems in quantum mechanics. Operator algebra is used to show the ease with which one can calculate the harmonic oscillator wave functions and study the evolution of the coherent state. Similarly, three chapters on angular momentum give a detailed account of this important problem. Perhaps the most attractive feature of the book is the excellent balance between theory and applications and the large number of applications in such diverse areas as astrophysics, nuclear physics, atomic and molecular spectroscopy, solid-state physics, and quantum well structures.
This volume contains the Proceedings of the NATO Advanced Study Institute "Quantum Optics and Experimental General Relativity" which was held in Bad Windsheim, Federal Republic of Germany, from August 16 to 29, 1981. At first glance, one might wonder why a meeting should cover these two topics, and a good bit of quantum measurement theory as well, all of which seem to be completely unrelated. The key to what one may call this grand unification lies in the effort, underway in a number of laboratories around the world, to detect gravitational radiation. Present research is pursuing the development of two types of detectors: laser interferometers and resonant bar detectors. Be cause the signals...
Volume II continues with reaction rates, the concept of elementary intramolecular vibrational-energy redistribution (IVR) and the phenomena of rotational coherence which has become a powerful tool for the determination of molecular structure via time resolution. The second volume ends with an extensive list of references, according to topics, based on work by Professor Zewail and his group at Caltech. These collected works by Professor Zewail will certainly be indispensable to both experts and beginners in the field. The author is known for his clarity and for his creative and systematic contributions. These volumes will be of interest and should prove useful to chemists, biologists and physicists. As noted by Professor J. Manz (Berlin) and Professor A.W. Castleman, Jr.
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more. 1972 edition.
Semiconductors and Semimetals
This classic sets forth the fundamentals of thermodynamics and kinetic theory simply enough to be understood by beginners, yet with enough subtlety to appeal to more advanced readers, too.
The book presents the following counterintuitive theoretical results breaking several paradigms of quantum mechanics and providing alternative interpretations of some important phenomena in atomic and molecular physics. 1) Singular solutions of the Schrödinger and Dirac equations should not have been always rejected: they can explain the experimental high-energy tail of the linear momentum distribution in the ground state of hydrogenic atoms. Application: a unique way to test intimate details of the nuclear structure by performing atomic (rather than nuclear) experiments and calculations. 2) Charge exchange is not really an inherently quantal phenomenon, but rather has classical roots. Appl...
Largely self contained, this expert three-part treatment focuses on the dynamics of nonradiating fluids; explores the physics of radiation, radiation transport, and the dynamics of radiating fluids; and offers a brief appendix that explains the use of tensor concepts in equations related to the transition of ordinary fluids to relativistic fluids to radiation. 1984 edition.