You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since the late 1960s, methods of birational geometry have been used successfully in the theory of linear algebraic groups, especially in arithmetic problems. This book--which can be viewed as a significant revision of the author's book, Algebraic Tori (Nauka, Moscow, 1977)--studies birational properties of linear algebraic groups focusing on arithmetic applications. The main topics are forms and Galois cohomology, the Picard group and the Brauer group, birational geometry of algebraic tori, arithmetic of algebraic groups, Tamagawa numbers, $R$-equivalence, projective toric varieties, invariants of finite transformation groups, and index-formulas. Results and applications are recent. There is an extensive bibliography with additional comments that can serve as a guide for further reading.
This book is devoted to arithmetic geometry with special attention given to the unramified Brauer group of algebraic varieties and its most striking applications in birational and Diophantine geometry. The topics include Galois cohomology, Brauer groups, obstructions to stable rationality, Weil restriction of scalars, algebraic tori, the Hasse principle, Brauer-Manin obstruction, and étale cohomology. The book contains a detailed presentation of an example of a stably rational but not rational variety, which is presented as series of exercises with detailed hints. This approach is aimed to help the reader understand crucial ideas without being lost in technical details. The reader will end up with a good working knowledge of the Brauer group and its important geometric applications, including the construction of unirational but not stably rational algebraic varieties, a subject which has become fashionable again in connection with the recent breakthroughs by a number of mathematicians.
This volume honors Sir Peter Swinnerton-Dyer's mathematical career spanning more than 60 years' of amazing creativity in number theory and algebraic geometry.
The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equation. With over 50 geometric diagrams, this book includes illustrations of many of these topics. The book may be thought of as a companion reference for those students of algebraic number theory who wish to find more examples, a collection of recent research results on cubic fields, an easy-to-understand source for learning about Voronoi’s unit algorithm and several classical results which are ...
This volume contains the proceedings of the 2015 Clifford Lectures on Algebraic Groups: Structures and Actions, held from March 2–5, 2015, at Tulane University, New Orleans, Louisiana. This volume consists of six articles on algebraic groups, including an enhanced exposition of the classical results of Chevalley and Rosenlicht on the structure of algebraic groups; an enhanced survey of the recently developed theory of pseudo-reductive groups; and an exposition of the recently developed operational -theory for singular varieties. In addition, there are three research articles containing previously unpublished foundational results on birational automorphism groups of algebraic varieties; sol...
This volume carries the same title as that of an international conference held at the National University of Singapore, 9-11 January 2006 on the occasion of Roger E. Howe's 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe's mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications.
View the abstract.
The world's leading authorities describe the state of the art in Serre's conjecture and rational points on algebraic varieties.
None
This is the 13th annual volume of papers based on lectures given at the Seminaire des Nombres de Paris. The results presented here by an international group of mathematicians reflect recent work in many areas of number theory and should form a basis for further discussion on these topics.