You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"This collection consists of papers ... devoted to current trends in analytic number theory, function theory, algebraic number theory, algebraic geometry, and combinatorics" -- t.p. verso.
There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.
This book investigates the distributions of functionals defined on the sample paths of stochastic processes. It contains systematic exposition and applications of three general research methods developed by the authors. (i) The method of stratifications is used to study the problem of absolute continuity of distribution for different classes of functionals under very mild smoothness assumptions. It can be used also for evaluation of the distribution density of the functional. (ii) The method of differential operators is based on the abstract formalism of differential calculus and proves to be a powerful tool for the investigation of the smoothness properties of the distributions. (iii) The s...
This introduction to real analysis is based on a series of lectures by the author at Tohoku University. The text covers real numbers, the notion of general topology, and a brief treatment of the Riemann integral, followed by chapters on the classical theory of the Lebesgue integral on Euclidean spaces; the differentiation theorem and functions of bounded variation; Lebesgue spaces; distribution theory; the classical theory of the Fourier transform and Fourier series; and wavelet theory.
he concept of Hecke operators was so simple and natural that, soon after Hecke's work, scholars made the attempt to develop a Hecke theory for modular forms, such as Siegel modular forms. As this theory developed, the Hecke operators on spaces of modular forms in several variables were found to have arithmetic meaning. Specifically, the theory provided a framework for discovering certain multiplicative properties of the number of integer representations of quadratic forms by quadratic forms. Now that the theory has matured, the time is right for this detailed and systematic exposition of its fundamental methods and results. Features: The book starts with the basics and ends with the latest results, explaining the current status of the theory of Hecke operators on spaces of holomorphic modular forms of integer and half-integer weight congruence-subgroups of integral symplectic groups.Hecke operators are considered principally as an instrument for studying the multiplicative properties of the Fourier coefficients of modular forms. It is the authors' intent that Modular Forms and Hecke Operators help attract young researchers to this beautiful and mysterious realm of number theory.
Since the late 1960s, methods of birational geometry have been used successfully in the theory of linear algebraic groups, especially in arithmetic problems. This book--which can be viewed as a significant revision of the author's book, Algebraic Tori (Nauka, Moscow, 1977)--studies birational properties of linear algebraic groups focusing on arithmetic applications. The main topics are forms and Galois cohomology, the Picard group and the Brauer group, birational geometry of algebraic tori, arithmetic of algebraic groups, Tamagawa numbers, $R$-equivalence, projective toric varieties, invariants of finite transformation groups, and index-formulas. Results and applications are recent. There is an extensive bibliography with additional comments that can serve as a guide for further reading.
This book discusses character theory and its applications to finite groups. The work places the subject within the reach of people with a relatively modest mathematical background. The necessary background exceeds the standard algebra course with respect only to finite groups. Starting with basic notions and theorems in character theory, the authors present a variety of results on the properties of complex-valued characters and applications to finite groups. The main themes are degrees and kernels of irreducible characters, the class number and the number of nonlinear irreducible characters, values of irreducible characters, characterizations and generalizations of Frobenius groups, and generalizations and applications of monomial groups. The presentation is detailed, and many proofs of known results are new. Most of the results in the book are presented in monograph form for the first time. Numerous exercises offer additional information on the topics and help readers to understand the main concepts and results.