You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis...
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
This volume, devoted to the 70th birthday of A. L. Onishchik, contains a collection of articles by participants in the Moscow Seminar on Lie Groups and Invariant Theory headed by E. B. Vinberg and A. L. Onishchik. The book is suitable for graduate students and researchers interested in Lie groups and related topics.
Translations of articles on mathematics appearing in various Russian mathematical serials.
This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantiz...
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
None
Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections