You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.
This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.
This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.
Complexity and dynamic order of controlled engineering systems is constantly increasing. Complex large scale systems (where "large" reflects the system’s order and not necessarily its physical size) appear in many engineering fields, such as micro-electromechanics, manufacturing, aerospace, civil engineering and power engineering. Modeling of these systems often result in very high-order models imposing great challenges to the analysis, design and control problems. "Efficient Modeling and Control of Large-Scale Systems" compiles state-of-the-art contributions on recent analytical and computational methods for addressing model reduction, performance analysis and feedback control design for ...
The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical...
Optimal Event-triggered Control using Adaptive Dynamic Programming discusses event triggered controller design which includes optimal control and event sampling design for linear and nonlinear dynamic systems including networked control systems (NCS) when the system dynamics are both known and uncertain. The NCS are a first step to realize cyber-physical systems (CPS) or industry 4.0 vision. The authors apply several powerful modern control techniques to the design of event-triggered controllers and derive event-trigger condition and demonstrate closed-loop stability. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included f...
This monograph provides a state-of-the-art treatment of learning and robust control in quantum technology. It presents a systematic investigation of control design and algorithm realisation for several classes of quantum systems using control-theoretic tools and machine-learning methods. The approaches rely heavily on examples and the authors cover: sliding mode control of quantum systems; control and classification of inhomogeneous quantum ensembles using sampling-based learning control; robust and optimal control design using machine-learning methods; robust stability of quantum systems; and H∞ and fault-tolerant control of quantum systems. Both theoretical algorithm design and potential...
This book is primarily a research monograph that presents in a unified man ner some recent research on a class of hybrid dynamical systems (HDS). The book is intended both for researchers and advanced postgraduate stu dents working in the areas of control engineering, theoretical computer science, or applied mathematics and with an interest in the emerging field of hybrid dynamical systems. The book assumes competence in the basic mathematical techniques of modern control theory. The material presented in this book derives from a period of fruitful research collaboration between the authors that began in 1994 and is still ongoing. Some of the material contained herein has appeared as isolate...