You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Steadily growing applications of game theory in modern science (including psychology, biology and economics) require sources to provide rapid access in both classical tools and recent developments to readers with diverse backgrounds. This book on game theory, its applications and mathematical methods, is written with this objective in mind.The book gives a concise but wide-ranging introduction to games including older (pre-game theory) party games and more recent topics like elections and evolutionary games and is generously spiced with excursions into philosophy, history, literature and politics. A distinguished feature is the clear separation of the text into two parts: elementary and adva...
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative se...
Steadily growing applications of game theory in modern science (including psychology, biology and economics) require sources to provide rapid access in both classical tools and recent developments to readers with diverse backgrounds. This book on game theory, its applications and mathematical methods, is written with this objective in mind.The book gives a concise but wide-ranging introduction to games including older (pre-game theory) party games and more recent topics like elections and evolutionary games and is generously spiced with excursions into philosophy, history, literature and politics. A distinguished feature is the clear separation of the text into two parts: elementary and adva...
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative se...
When this book was first published (in Russian), it proved to become the fountainhead of a major stream of important papers in mathematics, physics and even chemistry; indeed, it formed the basis of new methodology and opened new directions for research. The present English edition includes new examples of applications to physics, hitherto unpublished or available only in Russian. Its central mathematical idea is to use topological methods to analyze isotropic invariant manifolds in order to obtain asymptotic series of eigenvalues and eigenvectors for the multi-dimensional Schrödinger equation, and also to take into account the so-called tunnel effects. Finite-dimensional linear theory is reviewed in detail. Infinite-dimensional linear theory and its applications to quantum statistics and quantum field theory, as well as the nonlinear theory (involving instantons), will be considered in a second volume.
This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for