You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a printed edition of the Special Issue "Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind" that was published in Energies
The effects of human-caused global warming are obvious, requiring new strategies and approaches. The concept of business-as-usual is now no longer beneficial. Extraction of renewable energy in marine environments represents a viable solution and an important path for the future. These huge renewable energy resources in seas and oceans can be harvested, including wind, tide, and waves. Despite the initial difficulties related mostly to the elevated operational risks in the harsh marine environment, newly developed technologies are economically effective or promising. Simultaneously, many challenges remain to be faced. These are the main issues targeted by the present book, which is associated with the Special Issue of Energies Journal entitled “Renewable Energy in Marine Environment”. Papers on innovative technical developments, reviews, case studies, and analytics, as well as assessments, and papers from different disciplines that are relevant to the topic are included. From this perspective, we hope that the results presented are of interest to for scientists and those in related fields such as energy and marine environments, as well as for a wider audience.
This book contains the suite of protocols for the equitable evaluation of marine energy converters (based on either tidal or wave energy) produced by the EquiMar consortium led by the University of Edinburgh. These protocols aim to harmonise testing and evaluation procedures across the wide variety of devices presently available with the aim of accelerating adoption though technology matching and improved understanding of the environmental and economic impacts associated with the deployment of arrays of devices. EquiMar will assess devices through a suite of protocols covering site selection, device engineering design, the scaling up of designs, the deployment of arrays of devices, the environmental impact, in terms of both biological & coastal processes, and economic issues. The series of protocols has been developed through a robust, auditable process and we hope they will provide a firm foundation for project developers, consenting agencies, project funders and technology developers to evaluate concepts.
Renewable energy resources offshore are a growing contributor to the total energy production in a growing number of countries. As a result the interest in the topic is increasing. Trends in Renewable Energies Offshore includes the papers presented at the 5th International Conference on Renewable Energies Offshore (RENEW 2022, Lisbon, Portugal, 8-10 November 2022), and covers recent developments and experiences gained in concept development, design and operation of such devices. The scope of the contributions is broad, covering all aspects of renewable energies offshore activities, including: • Resource assessment • Tidal Energy • Wave Energy • Wind Energy • Solar Energy • Renewab...
This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com
In an increasingly urbanized world, water systems must be designed and operated according to innovative standards in terms of climate adaptation, resource efficiency, sustainability and resilience. This grand challenge triggers unprecedented questions for hydro-environment research and engineering. Shifts in paradigms are urgently needed in the way we view (circular) water systems, water as a renewable energy (production and storage), risk management of floods, storms, sea level rise and droughts, as well as their consequences on water quality, morphodynamics (e.g., reservoir sedimentation, scour, sustainability of deltas) and the environment. Addressing these issues requires a deep understanding of basic processes in fluid mechanics, heat and mass transfer, surface and groundwater flow, among others.
Progress in Renewable Energies Offshore includes the papers presented in the 2nd International Conference on Renewable Energies Offshore (RENEW2016, Lisbon, Portugal, 24-26 October 2016). The scope of the book is broad, covering all aspects of renewable energies offshore activities such as resource assessment; wind energy; wave energy; tidal energy; ocean energy devices; multiuse platforms; PTO design; grid connection; economic assessment; installation and maintenance planning. The contents of the present book are organized in these main subject areas corresponding to the sessions in the Conference. The conference reflects the importance of the renewable energies offshore worldwide and is an opportunity to contribute to the exchange of information on the developments and experience obtained in concept development, design and operation of these devices. Progress in Renewable Energies Offshore has as main target academics and professionals working in the related areas of renewable energies.
Renewable Energies Offshore includes the papers presented in the 1st International Conference on Renewable Energies Offshore (RENEW2014), held in Lisbon, 24-26 November 2014. The conference is a consequence of the importance of the offshore renewable energies worldwide and an opportunity to contribute to the exchange of information on the dev
Vibration Fatigue by Spectral Methods relates the structural dynamics theory to the high-cycle vibration fatigue. The book begins with structural dynamics theory and relates the uniaxial and multiaxial vibration fatigue to the underlying structural dynamics and signal processing theory. Organized in two parts, part I gives the theoretical background and part II the selected experimental research. The time- and frequency- domain aspects of signal processing in general, related to structural dynamics and counting methods are covered in detail. It also covers all the underlying theory in structural dynamics, signal processing, uniaxial & multiaxial fatigue; including non-Gaussianity and non-sta...