You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book is devoted to the consideration of the different processes taking place in thin films and at surfaces. Since the most important physico-chemical phenomena in such media are accompanied by the rearrangement of an intra- and intermolecular coordinates and consequently a surrounding molecular ensemble, the theory of radiationless multi-vibrational transitions is used for its description. The second part of the book considers the numerous surface phenomena. And in the third part is described the preparation methods and characteristics of different types of thin films. Both experimental and theoretical descriptions are represented. Media rearrangement coupled with the reagent transformat...
This systematic presentation covers both experimental and theoretical kinetic methods, as well as fundamental and applied. The identification of dominant reaction paths, reaction intermediates and rate-determining steps allows a quantification of the effects of reaction conditions and catalyst properties, providing guidelines for catalyst optimization. In addition, the form in which the equations are presented allows for their straightforward implementation for scale-up and chemical reactor design purposes. Throughout, the methodologies given are illustrated by many examples.
Catalyst Deactivation 1980: International Symposium Proceedings
Chemistry and chemical technology have been at the heart of the revolutionary developments of the 20th century. The chemical industry has a long history of combining theory (science) and practice (engineering) to create new and useful products. Worldwide, the process industry (which includes chemicals, petrochemicals, petroleum refining, and pharmaceuticals) is a huge, complex, and interconnected global business with an annual production value exceeding 4 trillion dollars. Although in industry special focus is in heterogeneous catalysis, homogeneous, enzymatic, photochemical and electrochemical catalysis should not be overlooked; as the major aim is to produce certain chemicals in the best possible way, applying those types of catalysis, which suit a particular process in the most optimal way. Catalysis according to the very definition of it deals with enhancement of reaction rates, that is, with catalytic kinetics. This book unifies the main sub disciplines forming the cornerstone of catalytic kinetics.* Provides a broad overview catalytic kinetics* Bridges the gaps that exist between hetero-, homo- and bio-catalysis* Written by internationally renowned experts in this field
More than a decade ago, because of the phenomenal growth in the power of computer simulations, The University of Georgia formed the first institutional unit devoted to the use of simulations in research and teaching: The Center for Simulational Physics. As the simulations community expanded further, we sensed a need for a meeting place for both experienced simulators and neophytes to discuss new techniques and recent results in an environment which promoted extended discussion. As a consequence, the Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's workshop was the eleventh in this ser...
Table of contents
Chemical education is essential to everybody because it deals with ideas that play major roles in personal, social, and economic decisions. This book is based on three principles: that all aspects of chemical education should be associated with research; that the development of opportunities for chemical education should be both a continuous process and be linked to research; and that the professional development of all those associated with chemical education should make extensive and diverse use of that research. It is intended for: pre-service and practising chemistry teachers and lecturers; chemistry teacher educators; chemical education researchers; the designers and managers of formal ...
The purpose of this book is to introduce researchers and practitioners to recent advances and applications of Monte Carlo Simulation (MCS). Random sampling is the key of the MCS technique. The 11 chapters of this book collectively illustrates how such a sampling technique is exploited to solve difficult problems or analyze complex systems in various engineering and science domains. Issues related to the use of MCS including goodness-of-fit, uncertainty evaluation, variance reduction, optimization, and statistical estimation are discussed and examples of solutions are given. Novel applications of MCS are demonstrated in financial systems modeling, estimation of transition behavior of organic molecules, chemical reaction, particle diffusion, kinetic simulation of biophysics and biological data, and healthcare practices. To enlarge the accessibility of this book, both field-specific background materials and field-specific usages of MCS are introduced in most chapters. The aim of this book is to unify knowledge of MCS from different fields to facilitate research and new applications of MCS.
The subject of this book is connected with a new direction in mathematics, which has been actively developed over the last few years, namely the field of polynomial computer algebra, which lies at the intersection point of algebra, mathematical analysis and programming. There were several incentives to write the book. First of all, there has lately been a considerable interest in applied nonlinear problems characterized by multiple sta tionary states. Practical needs have then in their turn led to the appearance of new theoretical results in the analysis of systems of nonlinear algebraic equations. And finally, the introduction of various computer packages for analytic manipulations has made...