You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The papers included here deal with the many faces of renormalization group formalism as it is used in different branches of theoretical physics. The subjects covered emphasize various applications to the theory of turbulence, chaos, quantum chaos in dynamical systems, spin systems and vector models. Also discussed are applications to related topics such as quantum field theory and chromodynamics, high temperature superconductivity and plasma physics.
This book reviews the synergism between various fields of research that are confronted with networks, such as genetic and metabolic networks, social networks, the Internet and ecological systems. In many cases, the interacting networks manifest so-called emergent properties that are not possessed by any of the individual components. Knowledge gained from the study of complex non-biological systems can be applied to the intricate braided relationships that govern cellular functions.
Contents:IntroductionTransfer Matrices: On Commuting Transfer MatricesOn Exactly Solved CasesAlgebra: General PrinciplesTemperley-Lieb Algebra: Generic CasesSpecial CasesGraph Temperley-Lieb AlgebrasHecke AlgebrasAlgebraic Formalism for ZQ SymmetryThe Modelling of Phase TransitionsVertex Models and Related Algebras, Braids and Cables Readership: Mathematical physicists. Keywords:Yang-Baxter Algebras;Algebraic Methods of Statistical Mechanics;Potts Model;Transfer Matrices;Solvable Models;Temperly-Lieb Algebras;Hecke Algebras;Generalized Clifford Algebras;Representations;Partition Functions;Phase Transitions;Vertex Models;Braid GroupReview: “This is an excellent survey of the Potts model and...
None
Optical technologies provide unique opportunities for the diagnosis of various pathological disorders. The range of biophotonics applications in clinical practice is considerably wide given that the optical properties of biological tissues are subject to significant changes during disease progression. Due to the small size of studied objects (from μm to mm) and despite some minimum restrictions (low-intensity light is used), these technologies have great diagnostic potential both as an additional tool and in cases of separate use, for example, to assess conditions affecting microcirculatory bed and tissue viability. This Special Issue presents topical articles by researchers engaged in the ...
An overview of recent developments in the field of first-order phase transitions, which may be considered a continuation of the previous work 'Aggregation Phenomena in Complex Systems', covering work done and discussed since then. Each chapter features a different aspect of the field written by international specialists, and covers such topics as nucleation and crystallization kinetic of silicate glasses, nucleation in concentration gradients, the determination of coefficients of emission of nucleation theory, diamonds from vitreous carbon.
With contributions by numerous experts
This book merges theoretical and experimental works initiated in 1997 from consideration of periodical artificial dielectric structures comprising magneto-optical materials. Modern advances in magnetophotonics are discussed giving theoretical analyses and demonstrations of the consequences of light interaction with non-reciprocal media of various designs. This first collection of foundational works is devoted to light-to-artificial magnetic matter phenomena and related applications. The subject covers the physical background and the continuing research in the field of magnetophotonics.
This book describes the Optical Immersion Clearing method and its application to acquire information with importance for clinical practice and various fields of biomedical engineering. The method has proved to be a reliable means of increasing tissue transparency, allowing the investigator or surgeon to reach deeper tissue layers for improved imaging and laser surgery. This result is obtained by partial replacement of tissue water with an active optical clearing agent (OCA) that has a higher refractive index and is a better match for the refractive index of other tissue components. Natural tissue scattering is thereby reduced. An exponential increase in research using this method has occurre...
Speckle photography is an advanced experimental technique used for quantitatve determination of density, velocity and temperature fields in gas, liquid, and plasma flows. This book presents the most important equations for the diffraction theory of speckle formation and the statistical properties of speckle fields. It also describes experimental set-ups and the equipment needed to implement these methods. Speckle photography methods for automatic data acquisition and processing are considered and examples for their use are given.