You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels
None
Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory.Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results.For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way they pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects.These two books give a rich and powerful view of one of geometry's very appealing sides.
The book includes the research papers presented in the final conference of the EU funded SARISTU (Smart Intelligent Aircraft Structures) project, held at Moscow, Russia between 19-21 of May 2015. The SARISTU project, which was launched in September 2011, developed and tested a variety of individual applications as well as their combinations. With a strong focus on actual physical integration and subsequent material and structural testing, SARISTU has been responsible for important progress on the route to industrialization of structure integrated functionalities such as Conformal Morphing, Structural Health Monitoring and Nanocomposites. The gap- and edge-free deformation of aerodynamic surf...
None
None
This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres.
Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul
This classic geometry text explores the theory of 3-dimensional convex polyhedra in a unique fashion, with exceptional detail. Vital and clearly written, the book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. This edition includes a comprehensive bibliography by V.A. Zalgaller, and related papers as supplements to the original text.