Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Deformation Quantization for Actions of Kahlerian Lie Groups
  • Language: en
  • Pages: 166

Deformation Quantization for Actions of Kahlerian Lie Groups

Let B be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action of B on a Fréchet algebra . Denote by the associated Fréchet algebra of smooth vectors for this action. In the Abelian case BR and isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures R on . When is a -algebra, every deformed Fréchet algebra admits a compatible pre- -structure, hence yielding a deformation theory at the level of -algebras too. In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.

Classification of $E_0$-Semigroups by Product Systems
  • Language: en
  • Pages: 138

Classification of $E_0$-Semigroups by Product Systems

In these notes the author presents a complete theory of classification of E0-semigroups by product systems of correspondences. As an application of his theory, he answers the fundamental question if a Markov semigroup admits a dilation by a cocycle perturbations of noise: It does if and only if it is spatial.

Singular Traces
  • Language: en
  • Pages: 468

Singular Traces

This book is the first complete study and monograph dedicated to singular traces. The text mathematically formalises the study of traces in a self contained theory of functional analysis. Extensive notes will treat the historical development. The final section will contain the most complete and concise treatment known of the integration half of Connes' quantum calculus. Singular traces are traces on ideals of compact operators that vanish on the subideal of finite rank operators. Singular traces feature in A. Connes' interpretation of noncommutative residues. Particularly the Dixmier trace,which generalises the restricted Adler-Manin-Wodzicki residue of pseudo-differential operators and play...

Stability of Line Solitons for the KP-II Equation in $\mathbb {R}^2$
  • Language: en
  • Pages: 110

Stability of Line Solitons for the KP-II Equation in $\mathbb {R}^2$

The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as . He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward . The local amplitude and the phase shift of the crest of the line solitons are described by a system of 1D wave equations with diffraction terms.

Faithfully Quadratic Rings
  • Language: en
  • Pages: 148

Faithfully Quadratic Rings

In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where is not a sum of squares and is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of -isometry, where is a preorder of the given ring, , or . (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in the field case.

Classes of Polish Spaces Under Effective Borel Isomorphism
  • Language: en
  • Pages: 102

Classes of Polish Spaces Under Effective Borel Isomorphism

The author studies the equivalence classes under Δ11 isomorphism, otherwise effective Borel isomorphism, between complete separable metric spaces which admit a recursive presentation and he shows the existence of strictly increasing and strictly decreasing sequences as well as of infinite antichains under the natural notion of Δ11-reduction, as opposed to the non-effective case, where only two such classes exist, the one of the Baire space and the one of the naturals.

Stability of KAM Tori for Nonlinear Schrödinger Equation
  • Language: en
  • Pages: 100

Stability of KAM Tori for Nonlinear Schrödinger Equation

The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation subject to Dirichlet boundary conditions , where is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier , any solution with the initial datum in the -neighborhood of a KAM torus still stays in the -neighborhood of the KAM torus for a polynomial long time such as for any given with , where is a constant depending on and as .

The Fourier Transform for Certain HyperKahler Fourfolds
  • Language: en
  • Pages: 178

The Fourier Transform for Certain HyperKahler Fourfolds

Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring CH∗(A). By using a codimension-2 algebraic cycle representing the Beauville-Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkähler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.

On the Singular Set of Harmonic Maps into DM-Complexes
  • Language: en
  • Pages: 102

On the Singular Set of Harmonic Maps into DM-Complexes

The authors prove that the singular set of a harmonic map from a smooth Riemammian domain to a Riemannian DM-complex is of Hausdorff codimension at least two. They also explore monotonicity formulas and an order gap theorem for approximately harmonic maps. These regularity results have applications to rigidity problems examined in subsequent articles.

Poisson Geometry in Mathematics and Physics
  • Language: en
  • Pages: 330

Poisson Geometry in Mathematics and Physics

This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.