You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Katz's text A History of Mathematics; An Introduction was originally published in 1993; this briefer version allows time enough to address 20th-century topics before a one-semester course is over. Biographical and ethnomathematics coverage have been cut, and recent discoveries have been included. A working knowledge of one year of calculus is enough background for most of the book, although the later chapters are a bit more demanding. Katz is affiliated with the U. of the District of Columbia. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
In recent decades it has become obvious that mathematics has always been a worldwide activity. But this is the first book to provide a substantial collection of English translations of key mathematical texts from the five most important ancient and medieval non-Western mathematical cultures, and to put them into full historical and mathematical context. The Mathematics of Egypt, Mesopotamia, China, India, and Islam gives English readers a firsthand understanding and appreciation of these cultures' important contributions to world mathematics. The five section authors--Annette Imhausen (Egypt), Eleanor Robson (Mesopotamia), Joseph Dauben (China), Kim Plofker (India), and J. Lennart Berggren (...
"This textbook grew out of the conviction that both prospective school teachers of mathematics and prospective college teachers of mathematics need a background in history to teach the subject more effectively. It is therefore designed for junior or senior mathematics majors who intend to teach in college or high school, and it concentrates on the history of those topics typically covered in an undergraduate curriculum or in elementary or high school. Because the history of any given mathematical topic often provides excellent ideas for teaching the topic, there is sufficient detail in each explanation of a new concept for the future (or present) teacher of mathematics to develop a classroom lesson or series of lessons based on history. In fact, many of the problems ask readers to develop a particular lesson. My hope is that students and prospective teachers will gain from this book a knowledge of how we got here from there, a knowledge that will provide a deeper understanding of many of the important concepts of mathematics"--
This volume examines how the history of mathematics can find application in the teaching of mathematics itself.
Covering a span of almost 4000 years, from the ancient Babylonians to the eighteenth century, this collection chronicles the enormous changes in mathematical thinking over this time as viewed by distinguished historians of mathematics from the past and the present. Each of the four sections of the book (Ancient Mathematics, Medieval and Renaissance Mathematics, The Seventeenth Century, The Eighteenth Century) is preceded by a Foreword, in which the articles are put into historical context, and followed by an Afterword, in which they are reviewed in the light of current historical scholarship. In more than one case, two articles on the same topic are included to show how knowledge and views about the topic changed over the years. This book will be enjoyed by anyone interested in mathematics and its history - and, in particular, by mathematics teachers at secondary, college, and university levels.
What is algebra? For some, it is an abstract language of x's and y’s. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns...
This book is for high school and college teachers who want to know how they can use the history of mathematics as a pedagogical tool to help their students construct their own knowledge of mathematics. Often, a historical development of a particular topic is the best way to present a mathematical topic, but teachers may not have the time to do the research needed to present the material. This book provides its readers with historical ideas and insights which can be immediately applied in the classroom. The book is divided into two sections: the first on the use of history in high school mathematics, and the second on its use in university mathematics. The articles are diverse, covering fields such as trigonometry, mathematical modeling, calculus, linear algebra, vector analysis, and celestial mechanics. Also included are articles of a somewhat philosophical nature, which give general ideas on why history should be used in teaching and how it can be used in various special kinds of courses. Each article contains a bibliography to guide the reader to further reading on the subject.
Medieval Europe was a meeting place for the Christian, Jewish, and Islamic civilizations, and the fertile intellectual exchange of these cultures can be seen in the mathematical developments of the time. This sourcebook presents original Latin, Hebrew, and Arabic sources of medieval mathematics, and shows their cross-cultural influences. Most of the Hebrew and Arabic sources appear here in translation for the first time. Readers will discover key mathematical revelations, foundational texts, and sophisticated writings by Latin, Hebrew, and Arabic-speaking mathematicians, including Abner of Burgos's elegant arguments proving results on the conchoid—a curve previously unknown in medieval Eur...
The year 2007 marks the 300th anniversary of the birth of one of the Enlightenment's most important mathematicians and scientists, Leonhard Euler. This volume is a collection of 24 essays by some of the world's best Eulerian scholars from seven different countries about Euler, his life and his work. Some of the essays are historical, including much previously unknown information about Euler's life, his activities in the St. Petersburg Academy, the influence of the Russian Princess Dashkova, and Euler's philosophy. Others describe his influence on the subsequent growth of European mathematics and physics in the 19th century. Still others give technical details of Euler's innovations in probab...
Since its publication, C.F. Gauss's Disquisitiones Arithmeticae (1801) has acquired an almost mythical reputation, standing as an ideal of exposition in notation, problems and methods; as a model of organisation and theory building; and as a source of mathematical inspiration. Eighteen authors - mathematicians, historians, philosophers - have collaborated in this volume to assess the impact of the Disquisitiones, in the two centuries since its publication.