Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Mathematical Methods of Classical Mechanics
  • Language: en
  • Pages: 530

Mathematical Methods of Classical Mechanics

This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Vladimir I. Arnold - Collected Works
  • Language: en
  • Pages: 500

Vladimir I. Arnold - Collected Works

Vladimir Arnold is one of the greatest mathematical scientists of our time, as well as one of the finest, most prolific mathematical authors. This first volume of his Collected Works focuses on representations of functions, celestial mechanics and KAM theory.

Arnold's Problems
  • Language: en
  • Pages: 664

Arnold's Problems

Vladimir Arnold is one of the most outstanding mathematicians of our time Many of these problems are at the front line of current research

Ordinary Differential Equations With Applications (2nd Edition)
  • Language: en
  • Pages: 312

Ordinary Differential Equations With Applications (2nd Edition)

During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based on the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook and as a valuable resource for researchers.This new edition contains corrections and suggestions from the various readers and users. A new chapter on Monotone Dynamical Systems is added to take into account the new developments in ordinary differential equations and dynamical systems.

Lectures on Partial Differential Equations
  • Language: en
  • Pages: 168

Lectures on Partial Differential Equations

Choice Outstanding Title! (January 2006) This richly illustrated text covers the Cauchy and Neumann problems for the classical linear equations of mathematical physics. A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging! What makes the book unique is Arnold's particular talent at holding a topic up for examination from a new and fresh perspective. He likes to blow away the fog of generality that obscures so much mathematical writing and reveal the essentially simple intuitive ideas underlying the subject. No other mathematical writer does this quite so well as Arnold.

Lectures on Partial Differential Equations
  • Language: en
  • Pages: 261

Lectures on Partial Differential Equations

Graduate-level exposition by noted Russian mathematician offers rigorous, readable coverage of classification of equations, hyperbolic equations, elliptic equations, and parabolic equations. Translated from the Russian by A. Shenitzer.

Vladimir I. Arnold - Collected Works
  • Language: en

Vladimir I. Arnold - Collected Works

  • Type: Book
  • -
  • Published: 2025-04-21
  • -
  • Publisher: Springer

This volume 7 of the "Collected Works" includes papers written by V.I. Arnold, one of the most outstanding mathematicians of all times, during the period from 1996 to 1999. At that time Arnold was focusing on the description of various spaces of curves, higher-dimensional continued fractions, pseudoperiodic topology, and unifying ideas related to symplectization, complexification and mathematical trinities in topology and mathematics in general. The "Arnoldfest" conference celebrating 60th anniversary of V.Arnold took place at the Fields Institute and University of Toronto, Canada, in 1997, and Arnold's lectures at that conference are included in this volume. In the 1990s Arnold got increasi...

Real Algebraic Geometry
  • Language: en
  • Pages: 113

Real Algebraic Geometry

This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).

Huygens and Barrow, Newton and Hooke
  • Language: en
  • Pages: 120

Huygens and Barrow, Newton and Hooke

Translated from the Russian by E.J.F. Primrose "Remarkable little book." -SIAM REVIEW V.I. Arnold, who is renowned for his lively style, retraces the beginnings of mathematical analysis and theoretical physics in the works (and the intrigues!) of the great scientists of the 17th century. Some of Huygens' and Newton's ideas. several centuries ahead of their time, were developed only recently. The author follows the link between their inception and the breakthroughs in contemporary mathematics and physics. The book provides present-day generalizations of Newton's theorems on the elliptical shape of orbits and on the transcendence of abelian integrals; it offers a brief review of the theory of regular and chaotic movement in celestial mechanics, including the problem of ports in the distribution of smaller planets and a discussion of the structure of planetary rings.

ARNOLD: Swimming Against the Tide
  • Language: en
  • Pages: 221

ARNOLD: Swimming Against the Tide

Vladimir Arnold, an eminent mathematician of our time, is known both for his mathematical results, which are many and prominent, and for his strong opinions, often expressed in an uncompromising and provoking manner. His dictum that "Mathematics is a part of physics where experiments are cheap" is well known. This book consists of two parts: selected articles by and an interview with Vladimir Arnold, and a collection of articles about him written by his friends, colleagues, and students. The book is generously illustrated by a large collection of photographs, some never before published. The book presents many a facet of this extraordinary mathematician and man, from his mathematical discoveries to his daredevil outdoor adventures.