You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rarely explicitly adopted in the literature, clarifies the ideas therein, and provides additional tools to attack open problems. Sofic and hyperlinear groups are countable discrete groups that can be suitably approximated by finite symmetric groups and groups of unitary matrices. These deep and fruitful notions, introduced by Gromov and Radulescu, respectively, in the late 1990s, stimulated an impressive ...
Two conferences, Logic and Its Applications in Algebra and Geometry and Combinatorial Set Theory, Excellent Classes, and Schanuel Conjecture, were held at the University of Michigan (Ann Arbor). These events brought together model theorists and set theorists working in these areas. This volume is the result of those meetings. It is suitable for graduate students and researchers working in mathematical logic.
An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.
Features a stimulating selection of papers on abelian groups, commutative and noncommutative rings and their modules, and topological groups. Investigates currently popular topics such as Butler groups and almost completely decomposable groups.
This book constitutes the proceedings of the 2000 Howard conference on “Infinite Dimensional Lie Groups in Geometry and Representation Theory”. It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and established researchers in the field of geometry and its applications to mathematical physics.
This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.* New surveys of research problems in topology* New perspectives on classic problems* Representative surveys of research groups from all around the world
Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience.
These lectures provides detailed introductions to some of the latest advances in three significant areas of rapid development in commutative algebra and its applications: tight closure and vector bundles; combinatorics and commutative algebra; constructive desingularization."
The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the “most interesting” part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gives complete proofs and addresses both graduate students and researchers.