You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume collects articles in pure and applied analysis, partial differential equations, geometric analysis and stochastic and infinite-dimensional analysis. In particular, the contributors discuss integral and pseudo-differential operators, which play an important role in partial differential equations. Other methods of solving the partial differential equations are considered, such as the min-max approach to variational problems and boundary value problems. The foundations of quantum mechanics from the viewpoints of infinite-dimensional spaces and Bell''s inequality and contraction are also mentioned.
The aim of this book is to develop a new approach which we called the hyper geometric one to the theory of various integral transforms, convolutions, and their applications to solutions of integro-differential equations, operational calculus, and evaluation of integrals. We hope that this simple approach, which will be explained below, allows students, post graduates in mathematics, physicists and technicians, and serious mathematicians and researchers to find in this book new interesting results in the theory of integral transforms, special functions, and convolutions. The idea of this approach can be found in various papers of many authors, but systematic discussion and development is real...
This volume presents a state-of-the-art account of the theory and applications of integral equations of convolution type, and of certain classes of integro-differential and non-linear integral equations. An extensive and well-motivated discussion of some open questions and of various important directions for further research is also presented. The book has been written so as to be self-contained, and includes a list of symbols with their definitions. For users of convolution integral equations, the volume contains numerous, well-classified inversion tables which correspond to the various convolutions and intervals of integration. It also has an extensive, up-to-date bibliography. The convolution integral equations which are considered arise naturally from a large variety of physical situations and it is felt that the types of solutions discussed will be usefull in many diverse disciplines of applied mathematics and mathematical physical. For researchers and graduate students in the mathematical and physical sciences whose work involves the solution of integral equations.
This book presents new results in the theory of the double Mellin-Barnes integrals popularly known as the general H-function of two variables.A general integral convolution is constructed by the authors and it contains Laplace convolution as a particular case and possesses a factorization property for one-dimensional H-transform. Many examples of convolutions for classical integral transforms are obtained and they can be applied for the evaluation of series and integrals.
This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications.In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book.Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations.In Chapter 4, the numerical real...
The mutual influence between mathematics and science and technology is becoming more and more widespread with profound connections among them being discovered. In particular, important connections between harmonic analysis, wavelet analysis and p-adic analysis have been found recently. This volume reports these findings and guides the reader towards the latest areas for further research. It is divided into two parts: harmonic, wavelet and p-adic analysis and p-adic and stochastic analysis.
This volume takes up various topics in Mathematical Analysis including boundary and initial value problems for Partial Differential Equations and Functional Analytic methods.Topics include linear elliptic systems for composite material ? the coefficients may jump from domain to domain; Stochastic Analysis ? many applied problems involve evolution equations with random terms, leading to the use of stochastic analysis.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences
This volume takes up various topics in Mathematical Analysis including boundary and initial value problems for Partial Differential Equations and Functional Analytic methods.Topics include linear elliptic systems for composite material — the coefficients may jump from domain to domain; Stochastic Analysis — many applied problems involve evolution equations with random terms, leading to the use of stochastic analysis.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences
Even though the theories of operational calculus and integral transforms are centuries old, these topics are constantly developing, due to their use in the fields of mathematics, physics, and electrical and radio engineering. Operational Calculus and Related Topics highlights the classical methods and applications as well as the recent advan
his volume contains the proceedings of the AMS Special Session Operator Algebras and Their Applications: A Tribute to Richard V. Kadison, held from January 10–11, 2015, in San Antonio, Texas. Richard V. Kadison has been a towering figure in the study of operator algebras for more than 65 years. His research and leadership in the field have been fundamental in the development of the subject, and his influence continues to be felt though his work and the work of his many students, collaborators, and mentees. Among the topics addressed in this volume are the Kadison-Kaplanksy conjecture, classification of C∗-algebras, connections between operator spaces and parabolic induction, spectral flow, C∗-algebra actions, von Neumann algebras, and applications to mathematical physics.